Biofilm Changes of Clinically Isolated Coagulase Negative Staphylococci

  • K. R. Soumya
  • P. Jishma
  • Sheela Sugathan
  • Jyothis Mathew
  • E. K. RadhakrishnanEmail author
Research Article


Coagulase Negative Staphylococci (CoNS) are remarkable for the heterogeneity in the chemical composition and structural architecture of its biofilm. The present study was aimed to investigate the impact of various factors on biofilm structure and composition of clinically isolated CoNS. Here, comparative microscopic analysis on CoNS biofilm was carried out under various physiological conditions. Quantitative and electron microscopic analysis of biofilm was conducted in the presence of different concentrations of glucose, NaCl, plasma and serum. From this, different CoNS strains were found to form its own pattern of biofilm in the presence of glucose or NaCl and also with respect to the biofilm-associated genes present. The growth conditions used in the study for the CoNS were shown to induce biofilm formation with the structural features designed by its genotype. The study gave insight into the fine modulation of CoNS biofilm structure in accordance with species, genetic basis and environmental conditions. Hence, the results can have clinical significance.


Biofilm PIA ica independent SEM TEM 



The authors gratefully acknowledge Indian Council of Medical Research (ICMR), Government of India, for the funded project on Coagulase Negative Staphylococci. They thank DBT RGYI and DBT–MSUB-IPLSARE programmes supporting to School of Biosciences, Mahatma Gandhi University, Kerala, India. They also acknowledge the Centre for Nanoscience and Nanotechnology and School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India, for providing support for the HR-TEM and SEM analysis of samples.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest to publish this manuscript.


  1. 1.
    Cervera C, Almela M, Martínez-Martínez JA, Moreno A, Miró JM (2009) Risk factors and management of Gram-positive bacteraemia. Int J Antimicrob Agents 34:S26–S30. CrossRefGoogle Scholar
  2. 2.
    Thomas R, Soumya KR, Mathew J, Radhakrishnan EK (2015) Inhibitory effect of silver nanoparticle fabricated urinary catheter on colonization efficiency of Coagulase Negative Staphylococci. J Photochem Photobiol, B 149:68–77. CrossRefGoogle Scholar
  3. 3.
    Gad GF, El-Feky MA, El-Rehewy MS, Hassan MA, Abolella H, El-Baky RM (2009) Detection of icaA, icaD genes and biofilm production by Staphylococcus aureus and Staphylococcus epidermidis isolated from urinary tract catheterized patients. J Infect Dev Ctries 3(5):342–351Google Scholar
  4. 4.
    Soumya KR, Snigdha S, Sugathan S, Mathew J, Radhakrishnan EK (2017) Zinc oxide–curcumin nanocomposite loaded collagen membrane as an effective material against methicillin-resistant coagulase-negative Staphylococci. 3 Biotech. Google Scholar
  5. 5.
    Johnson LR (2008) Microcolony and biofilm formation as a survival strategy for bacteria. J Theor Biol 251(1):24–34. CrossRefGoogle Scholar
  6. 6.
    Oliveira A, Cunha M (2008) Bacterial biofilms with emphasis on coagulase-negative staphylococci. J Venom Anim Toxins Incl Trop Dis 14(4):572–596. CrossRefGoogle Scholar
  7. 7.
    Soumya KR, Philip S, Sugathan S, Mathew J, Radhakrishnan EK (2017) Virulence factors associated with Coagulase Negative Staphylococci isolated from human infections. 3 Biotech. Google Scholar
  8. 8.
    Agarwal A, Singh KP, Jain A (2010) Medical significance and management of staphylococcal biofilm. FEMS Immunol Med Microbiol 58(2):147–160. CrossRefGoogle Scholar
  9. 9.
    Fey PD, Olson ME (2010) Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol 5(6):917–933. CrossRefGoogle Scholar
  10. 10.
    Cotter JJ, O’Gara JP, Mack D, Casey E (2008) Oxygen-mediated regulation of biofilm development is controlled by the alternative sigma factor B in Staphylococcus epidermidis. Appl Environ Microbiol 75(1):261–264. CrossRefGoogle Scholar
  11. 11.
    Soumya KR, Thomas SA, Sugathan S, Mathew J, Radhakrishnan EK (2013) Antibiotic susceptibility and multiplex PCR analysis of Coagulase Negative Staphylococci isolated from laboratory workers. Int J Curr Microbiol Appl Sci 2:266–272Google Scholar
  12. 12.
    Soumya KR, Sugathan S, Mathew J, Radhakrishnan EK (2016) Studies on coexistence of mec gene, IS256 and novel sasX gene among human clinical coagulase-negative staphylococci. 3 Biotech 6(2):233. CrossRefGoogle Scholar
  13. 13.
    Gowrishankar S, Pandian SK (1859) Modulation of Staphylococcus epidermidis (RP62A) extracellular polymeric layer by marine cyclic dipeptide-cyclo(l-leucyl-l-prolyl) thwarts biofilm formation. Biochim Biophys Acta (BBA) Biomembr 7:1254–1262. Google Scholar
  14. 14.
    Agarwal A, Jain A (2013) Glucose & sodium chloride induced biofilm production & ica operon in clinical isolates of staphylococci. Indian J Med Res 138:262–266Google Scholar
  15. 15.
    Kreth J, Schaudinn C, Stoodley P, Hall-Stoodley L, Gorur A, Remis J, Wu S, Auer M, Hertwig S, Guerrero-Given D, Hu FZ, Ehrlich GD, Costerton JW, Robinson DH, Webster P (2014) Death and transfiguration in static Staphylococcus epidermidis cultures. PLoS ONE 9(6):e100002. CrossRefGoogle Scholar
  16. 16.
    Takahashi C, Kalita G, Ogawa N, Moriguchi K, Tanemura M, Kawashima Y, Yamamoto H (2015) Electron microscopy of Staphylococcus epidermidis fibril and biofilm formation using image-enhancing ionic liquid. Anal Bioanal Chem 407(6):1607–1613. CrossRefGoogle Scholar
  17. 17.
    Nelson A, Hultenby K, Hell E, Riedel HM, Brismar H, Flock JI, Lundahl J, Giske CG, Marchini G (2009) Staphylococcus epidermidis isolated from newborn infants express pilus-like structures and are inhibited by the cathelicidin-derived antimicrobial peptide LL37. Pediatr Res 66(2):174–178. CrossRefGoogle Scholar
  18. 18.
    Buttner H, Mack D, Rohde H (2015) Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol 5:14. Google Scholar
  19. 19.
    Banner MA, Cunniffe JG, Macintosh RL, Foster TJ, Rohde H, Mack D, Hoyes E, Derrick J, Upton M, Handley PS (2007) Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation-associated protein. J Bacteriol 189(7):2793–2804. CrossRefGoogle Scholar
  20. 20.
    Schommer NN, Christner M, Hentschke M, Ruckdeschel K, Aepfelbacher M, Rohde H (2011) Staphylococcus epidermidis uses distinct mechanisms of biofilm formation to interfere with phagocytosis and activation of mouse macrophage-like cells 774A.1. Infect Immun 79(6):2267–2276. CrossRefGoogle Scholar
  21. 21.
    Dobinsky S, Kiel K, Rohde H, Bartscht K, Knobloch JK, Horstkotte MA, Mack D (2003) Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J Bacteriol 185(9):2879–2886CrossRefGoogle Scholar
  22. 22.
    Vuong C, Kidder JB, Jacobson ER, Otto M, Proctor RA, Somerville GA (2005) Staphylococcus epidermidis polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. J Bacteriol 187(9):2967–2973. CrossRefGoogle Scholar
  23. 23.
    Sadykov MR, Olson ME, Halouska S, Zhu Y, Fey PD, Powers R, Somerville GA (2008) Tricarboxylic acid cycle-dependent regulation of Staphylococcus epidermidis polysaccharide intercellular adhesin synthesis. J Bacteriol 190(23):7621–7632. CrossRefGoogle Scholar
  24. 24.
    You Y, Xue T, Cao L, Zhao L, Sun H, Sun B (2014) Staphylococcus aureus glucose-induced biofilm accessory proteins, GbaAB, influence biofilm formation in a PIA-dependent manner. Int J Med Microbiol IJMM 304(5–6):603–612. CrossRefGoogle Scholar
  25. 25.
    Sadykov MR, Hartmann T, Mattes TA, Hiatt M, Jann NJ, Zhu Y, Ledala N, Landmann R, Herrmann M, Rohde H, Bischoff M, Somerville GA (2011) CcpA coordinates central metabolism and biofilm formation in Staphylococcus epidermidis. Microbiology 157(Pt 12):3458–3468. CrossRefGoogle Scholar
  26. 26.
    Neopane P, Nepal HP, Shrestha R, Uehara O, Abiko Y (2018) In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int J Gen Med 11:25–32. CrossRefGoogle Scholar
  27. 27.
    Greco C, Martincic I, Gusinjac A, Kalab M, Yang AF, Ramirez-Arcos S (2007) Staphylococcus epidermidis forms biofilms under simulated platelet storage conditions. Transfusion 47(7):1143–1153. CrossRefGoogle Scholar
  28. 28.
    Cardile AP, Sanchez CJ, Samberg ME, Romano DR, Hardy SK, Wenke JC, Murray CK, Akers KS (2014) Human plasma enhances the expression of Staphylococcal microbial surface components recognizing adhesive matrix molecules promoting biofilm formation and increases antimicrobial tolerance in vitro. BMC Res Notes 7(1):457. CrossRefGoogle Scholar
  29. 29.
    Franca A, Cerca N (2016) Plasma is the main regulator of Staphylococcus epidermidis biofilms virulence genes transcription in human blood. Pathog Dis. Google Scholar
  30. 30.
    Ding X, Liu Z, Su J, Yan D (2014) Human serum inhibits adhesion and biofilm formation in Candida albicans. BMC Microbiol 14:80. CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  • K. R. Soumya
    • 1
  • P. Jishma
    • 1
  • Sheela Sugathan
    • 2
  • Jyothis Mathew
    • 1
  • E. K. Radhakrishnan
    • 1
    Email author
  1. 1.School of BiosciencesMahatma Gandhi UniversityKottayamIndia
  2. 2.Sree Narayana Institute of Medical SciencesErnakulamIndia

Personalised recommendations