Characterization of the Polysaccharides Released by the Toxic Marine Dinoflagellate Alexandrium catenella Under Metal Stress

  • Faouzi HerziEmail author
Research Article


A laboratory study was conducted in order to characterize the polysaccharides exudated by the marine toxic dinoflagellate Alexandrium catenella under metal stress conditions. Cultures were exposed to increasing free metal concentrations of copper ([Cu2+] = 2.51 × 10−9–1.27 × 10−8 mol/l), zinc ([Zn2+] = 2.80 × 10−7–1.00 × 10−6 mol/l), cadmium ([Cd2+] = 2.59 × 10−8–7.80 × 10−8 mol/l) and lead ([Pb2+] = 1.14 × 10−8–4.37 × 10−8 mol/l). The composition in aldoses of the polysaccharides exudated in the culture media was analyzed by gas chromatography. In comparison with the controls, the exudation of polysaccharides was greatly increased under metal stress, to reach its maximal values expressed as specific amounts in total aldoses at the highest levels of metal contamination (copper: 1.1 × 10−3 μg Cell−1 at 7.06 × 10−9 mol/l and 4.7 × 10−3 μg Cell−1 at 1.27 × 10−8 mol/l; lead: 1.15 × 10−3 μg Cell−1 at 2.6 × 10−8 mol/l). Composition in aldoses of the polysaccharides exudated was different according to the metal studied and to the contamination levels. Results showed that glucose represented the major aldose composing the polysaccharides released and being able to take part in metal speciation. The authors conclude that high levels of glucose released by A. catenella in its extracellular medium could take a part in some survival strategies setup by the dinoflagellate to adapt to metal stress.


Alexandrium catenella Exudation Glucose Polysaccharides Trace metals 



Dissolved organic carbon


Dissolved organic matter


Fluorescent dissolved organic matter


Gas chromatography


Harmful algal blooms


Parallel factor analysis


Paralytic shellfish poisoning



The Conseil Général du Var (CG), Toulon Provence Méditerranée (TPM), supported this research and ARCUS CERES project (Région PACA-MAE). The authors are deeply indebted to Pr. Yves COLLOS, Drs. Estelle MASSERET and Mohamed LAABIR (ECOSYM UMR 5119 of the Montpellier 2 University) and to Dr. Dominique JAMET (PROTEE EA 3819) for providing them with the Alexandrium catenella strain ACT03 used in this study.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest to publish this manuscript.


  1. 1.
    Lilly EL, Kulis DM, Gentien P, Anderson DM (2002) Paralytic shellfish poisoning toxins in France linked to a human-introduced strain of Alexandrium catenella from western Pacific: evidence from DNA and toxin analysis. J Plankton Res 24:443–452CrossRefGoogle Scholar
  2. 2.
    Pratima G, Batul D (2017) Bacterial Exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71CrossRefGoogle Scholar
  3. 3.
    Andrade LR, Leal RN, Noseda M, Durate ME, Pereira MS, Mourao PA, Farina M, Amado Filho DM (2010) Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity. Mar Pollut Bull 60:1482–1488CrossRefGoogle Scholar
  4. 4.
    Thornton DCO (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycol 49:20–46CrossRefGoogle Scholar
  5. 5.
    Magaletti E, Urbani R, Sist P, Ferrari CR, Cicero A (2004) Abundance and chemical characterization of extracellular carbohydrates released by the marine diatom Cylindrotheca fusiformis under N- and P limitation. Eur J Phycol 39:133–142CrossRefGoogle Scholar
  6. 6.
    Kiliç NK, Kürkçü G, Kumruoglu D, Dönmez G (2015) EPS production and bioremoval of heavy metals by mixed and pure bacterial cultures isolated from Ankara Stream. Water Sci Technol 72:1488–1494CrossRefGoogle Scholar
  7. 7.
    Herzi F, Jean N, Huiyu Zhao, Mounier S, Mabrouk HH, Sakka Hlaili A (2013) Copper and cadmium effects on growth and extracellular exudation of the marine toxic dinoflagellate Alexandrium catenella: 3D-fluorescence spectroscopy approach. Chemosphere 93:1230–1239CrossRefGoogle Scholar
  8. 8.
    Cowie GL, Hedges JI (1984) Determination of neutral sugars in plankton, sediments, and wood by capillary gas chromatography of equilibrated isomeric mixtures. Anal Chem 56:497–504CrossRefGoogle Scholar
  9. 9.
    Lopez-Sandoval DC, Rodriguez-Ramos T, Cermeno P, Maranon E (2013) Exudation of organic carbon by marine phytoplankton: dependence on taxon and cell size. Mar Ecol Prog Ser 477:53–60CrossRefGoogle Scholar
  10. 10.
    Mühlenbruch M, Grossart HP, Eigemann F, Voss M (2018) Mini-review: phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol 20:2671–2685CrossRefGoogle Scholar
  11. 11.
    Mandal SK, Singh RP, Patel V (2011) Isolation and characterization of exopolysaccharide secreted by a toxic dinoflagellate, Amphidinium carterae Hulburt 1957 and its probable role in harmful algal blooms (HABs). Microb Ecol 62:518–552CrossRefGoogle Scholar
  12. 12.
    Staats N, Stal LJ, Mur LR (2000) Exopolysaccharide production by the epipelic diatom Cylindrotheca closterium: effects of nutrient conditions. J Exp Mar Biol Ecol 249:13–27CrossRefGoogle Scholar
  13. 13.
    Engel A, Handel N, Wohlers J, Lunau M, Grossart HP, Sommer U, Riebesell U (2010) Effects of sea surface warming on the production and composition of dissolved organic matter during phytoplankton blooms: results from a mesocosm study. J Plankton Res 33:357–372CrossRefGoogle Scholar
  14. 14.
    Vasconcelos MTSD, Leal MFC, Van der Berg CMG (2002) Influence of the nature of the exudates released by different marine algae on the growth, trace metal uptake and exudation of Emiliania huxleyi in natural seawater. Mar Chem 77:187–210CrossRefGoogle Scholar
  15. 15.
    Cherrier J, Valentine SK, Hamill B, Jeffrey WH, Marra JF (2015) Light-mediated release of dissolved organic carbon by phytoplankton. J Mar Syst 147:45–51CrossRefGoogle Scholar
  16. 16.
    Lorenzo JI, Nieto-Cid M, Alvarez-Salgado XA, Perez P, Beiras R (2007) Contrasting complexing capacity of dissolved organic matter produced during the onset, development and decay of a simulated bloom of the marine diatom Skeletonema costatum. Mar Chem 103:61–75CrossRefGoogle Scholar
  17. 17.
    Ahner BA, Price NM, Morel FMM (1994) Phytochelatin production by marine phytoplankton at low free metal ion concentrations: laboratory studies and field data from Massachusetts Bay. Proc Natl Acad Sci USA 91:8433–8436CrossRefGoogle Scholar
  18. 18.
    Guillard RLL, Ryther JH (1962) Studies of marine planktonic diatom I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239CrossRefGoogle Scholar
  19. 19.
    Landry MR, Hassett RP (1982) Estimating the grazing impact of marine microzooplankton. Mar Biol 67:283–288CrossRefGoogle Scholar
  20. 20.
    Skoog DA, Holler FJ, Nieman TA (1992) Principe d’analyse instrumentale. De Boeck, Université, ParisGoogle Scholar
  21. 21.
    Hofmann T, Hanlon ARM, Taylor JD, Ball AS, Osborn AM, Underwood GJC (2009) Dynamics and compositional changes in extracellular carbohydrates in estuarine sediments during degradation. Mar Ecol Prog Ser 379:45–58CrossRefGoogle Scholar
  22. 22.
    De Brouwer JFC, Stal LJ (2001) Short-term dynamics in microphytobenthos distribution and associated extracellular carbohydrates in surface sediments of intertidal mudflat. Mar Ecol Prog Ser 218:33–44CrossRefGoogle Scholar
  23. 23.
    Herzi F (2013) Caractérisation chimique des exsudats du dinoflagellé marin toxique Alexandrium catenella et de la diatomée marine Skeletonema costatum et étude de la réponse protéomique d’Alexandrium catenella en conditions de stress métalliques. Ph.D. thesis, Université de ToulonGoogle Scholar
  24. 24.
    Thakur KG, Sekar G (2011) D. Glucose as green ligand for selective copper catalyzed phenol synthesis from halides with an easy catalyst removal. Chem Commun 47:6692–6694CrossRefGoogle Scholar
  25. 25.
    Jean N, Boge G, Jamet JL, Richard S, Jamet D (2005) Annual contribution of different plankton size classes to particulate dimethylsulfoniopropionate in a marine perturbed ecosystem. J Mar Syst 53:235–247CrossRefGoogle Scholar
  26. 26.
    Jean N, Boge G, Jamet JL, Jamet D (2006) Comparison of ß-dimethylsulfoniopropionate (DMSP) levels in two Mediterranean ecosystems with different trophic levels. Mar Chem 101:190–202CrossRefGoogle Scholar
  27. 27.
    Natacha J, Estelle D, Faouzi H, Balliau T, Laabir M, Masseret E, Mounier S (2017) Modifications of the soluble proteome of a mediterranean strain of the invasive neurotoxic dinoflagellate Alexandrium catenella under metal stress conditions. Aquat Toxicol 188:88–91Google Scholar
  28. 28.
    Aslam SN, Cresswell-Maynard T, Thomas DN, Underwood GJC (2012) Production and characterization of the intra- and extracellular carbohydrates and polymeric substances (eps) of three sea-ice diatom species, and evidence for a cryoprotective role for eps. J Phycol 48:1494–1509CrossRefGoogle Scholar
  29. 29.
    Hama T, Yanagi K (2001) Production and neutral aldose composition of dissolved carbohydrates excreted by natural marine phytoplankton populations. Limnol Oceanogr 46:1945–1955CrossRefGoogle Scholar
  30. 30.
    Mari X, Passow U, Migon C, Burd AB, Legendre L (2017) Transparent exopolymer particles: effects on carbon cycling in the ocean. Prog Oceanogr 151:13–37CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  1. 1.Université de ToulonLa GardeFrance

Personalised recommendations