Advertisement

Novel Trichomeristogenous Development of Pycnidium in Truncatella angustata BPF5 (Coelomycete)

  • Sanjay Sahay
Research Article

Abstract

Morphogenesis of pycnidium of Truncatella angustata BPF5 has been studied under in vitro culture on l-arabinoze medium. A single stalked, lemon shaped and papillate initial cell seems to take part in the formation of pycnidium. The apical papilla of initial cell elongates so as to give the initial a central position flanked by hyphae. This single initial by successive divisions becomes an oval pycnidial primordium (trichomeristogenous). Further enlargement of pycnidium seems to take place due to mechanical force exerted by successive conidial formation. At maturity, the pycnidium is melanized. Some primordia abort leaving behind ghost pycnidia in the central disc. The minimal supplemented media like l-arabinoze medium reduce vegetative growth but induce early pycnidial formation thus requiring less teasing operations during microscopy. This in turn avoids damage of fragile young structures and facilitates study of developmental stages. This is the first report of early stages of pycnidial development under in vitro condition in any of the Coelomycetous fungus.

Keywords

Truncatella angustata Pycnidial development Trichomeristogenous development l-arabinose medium 

Notes

Acknowledgements

Financial assistance in the form of major project grant from Madhya Pradesh Council of Science and Technology, Bhopal is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. 1.
    Watanbe K, Doi Y, Kobayashi T (1997) Pycnidial development of Phyllosticta harai and Spheropsis sp. Mycoscience 38:259–265.  https://doi.org/10.1007/bf02464083 CrossRefGoogle Scholar
  2. 2.
    Watanabe K, Kobayashi T, Doi Y (1998) Conidiomata of Truncatella sp. on different media. Nippon Kingakukai Kaiho 39:21–25Google Scholar
  3. 3.
    Murugan M, Arumugam P, Arunkumar K (2016) Developmental morphology of conidiomata in Phyllosticta Caryotae. J Bacteriol Mycol 3:1038Google Scholar
  4. 4.
    Watanabe K (1998) Conidiomatal development of Pestalatiopsis guepinii and P. neglecta on leaves of Gardenia jasminoides. Mycoscience 39:71–75.  https://doi.org/10.1007/BF02461581 CrossRefGoogle Scholar
  5. 5.
    Schnegg H (1915) Zur Entwicklungsgeschichte und Biologie der Pykniden, sowie der Schlingenmycelien und Hyphenknauel. Centralbl Bakt II 43:326Google Scholar
  6. 6.
    Kempton FE (1919) Origin and development of the Pycnidium. Bot Gaz 68(4):233–261CrossRefGoogle Scholar
  7. 7.
    DiCosmo F, Cole GT (2011) Morphogenesis of conidiomata in Chaetomella acutiseta (Coelomycetes). Can Bot 58:1129–1137.  https://doi.org/10.1139/b80-139 CrossRefGoogle Scholar
  8. 8.
    Taylor JE, Crous PW, Swart L (2001) Foliicolous and caulicolous fungi associated with Proteaceae cultivated in California. Mycotaxon 78:75–103Google Scholar
  9. 9.
    Hu LP, Ma CH, Yang GM, Tan WJ (1996) Studies on the causal agent of apple mouldy core and core rot. J Fruit Sci 13:157–161Google Scholar
  10. 10.
    Espinoza JG, Briceño EX, Keith L, Latorre BA (2008) Canker and twig dieback of blue berry caused by Pestalotiopsis spp. and a Truncatella spp. in Chile. Plant Dis 92:1407–1414.  https://doi.org/10.1094/PDIS-92-10-1407 CrossRefGoogle Scholar
  11. 11.
    Arzanlou M, Torbati M, Jafary H (2012) Fruit rot of olive (Olea europaea) caused by Truncatella angustata. Plant Pathol Quar 2:117–123.  https://doi.org/10.5943/ppq/2/2/4 CrossRefGoogle Scholar
  12. 12.
    Eken C, Spanbayev A, Tulegenova Z, Abiev S (2009) First report of Truncatella angustata causing leaf spot on Rosa canina in Kazakhstan. Aust Plant Dis Notes 4:44–45.  https://doi.org/10.1071/DN09018 CrossRefGoogle Scholar
  13. 13.
    Aliddi A, Kowsari M, Javan-Nikkhah M, Karami S (2018) First report of leaf spot caused by Truncatella angustata on Persian Oak (Quercus brantii) in Iran. Plant Dis 102:1173CrossRefGoogle Scholar
  14. 14.
    Wenneker M, Pham KTK, Boekhoudtm LC, de Boer FA, van Leeuwen PJ, Hollinger T, Thomma BPHJ (2017) First report of Truncatella angustata causing postharvest rot on ‘Topaz’ apples in the Netherlands. Plant Dis 101:508CrossRefGoogle Scholar
  15. 15.
    Jagielski T, Zak I, Tyrak J, Bryk A (2015) First probable case of subcutaneous infection due to Truncatella angustata: a new fungal pathogen of humans. J Clin Microbiol 53:1961–1964.  https://doi.org/10.1128/JCM.00400-15 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Guba EF (1961) Monograph of Monochaetia and Pestalotia. Harvard University Press, CambridgeGoogle Scholar
  17. 17.
    Singh P, Hamid B, Lone MA, Ranjan K, Khan A, Chaurse VK, Sahay S (2012) Evaluation of Pectinase activity from the psychrophilic fungal strain Truncatella angustata-BPF5 for use in wine industry. J Endocytobiosis Cell Res 22:57–61Google Scholar
  18. 18.
    Sahay S (1999) Phenylalanine transport in Aspergillus nidulans: demeonstration of role of Phenylalanine binding protein. Ind J Exp Biol 37:152–156Google Scholar
  19. 19.
    Sutton BC (1980) The Coelomycetes. Commonwealth Mycological Institute, Kew, p 696Google Scholar
  20. 20.
    Nag Raj TR (1993) Coelomycetesous anamorphs with appendage-bearing conidia. Mycologue Publications, WaterlooGoogle Scholar
  21. 21.
    Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A (1999) Identification of yeasts by RFLP analysis of the 5.8 s rRNA gene and the two ribosomal internal transcribed spacers. Int J Syst Bacteriol 49:329–337.  https://doi.org/10.1099/00207713-49-1-329 CrossRefPubMedGoogle Scholar
  22. 22.
    Tamura K, Peterson D, Peterson N, Stecher G, Ne M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kim YK, Xiao CL, Rogers JD (2005) Influence of culture media and environmental factors on mycelia growth and pycnidial production of Sphaeropsis pyriputrescens. Mycologia 97(1):25–32.  https://doi.org/10.3852/mycologia.97.1.25 CrossRefPubMedGoogle Scholar
  24. 24.
    Moran GP, Coleman DC, Sullivan DJ (2011) Comparative genomics and the evolution of pathogenicity in human pathogenic fungi. Eukaryot Cell 10(1):34–42.  https://doi.org/10.1128/EC.00242-10 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ et al (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4(4):e1000046.  https://doi.org/10.1371/journal.pgen.1000046 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sahay S, Hamid B, Singh P, Ranjan K, Chauhan D, Rana RS, Chaurse VK (2013) Evaluation of pectinolytic activities for oenological uses from psychrotrophic yeasts. Lett Appl Microbiol 57(2):115–121.  https://doi.org/10.1111/lam.12081 CrossRefPubMedGoogle Scholar
  27. 27.
    Sahay S, Lone MA, Jain P, Singh P, Chouhan D, Shezad F (2013) Cold-active moulds from Jammu and Kashmir, India as potential source of coldactive enzymes. Am J Curr Microbiol 1(1):1–13Google Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  1. 1.Government Science and Commerce College, BenazirBhopalIndia
  2. 2.Government Postgraduate CollegeBiaoraIndia

Personalised recommendations