Advertisement

Exploring the Efficiency of Native Tree Species Grown at Mine Tailings for Phytoextraction of Lead and Iron

  • Inderpal Kaur
  • Sayali Khandwekar
  • Ravishankar Chauhan
  • Vikram Singh
  • S. K. Jadhav
  • K. L. Tiwari
  • Afaque Quraishi
Research Article
  • 41 Downloads

Abstract

Four (4) prominently growing tropical tree species were screened for their tolerance to heavy metals and evaluated for their suitability for remediation, at a contaminated site. The partitioning of Iron (Fe) and Lead (Pb) between roots and above-ground aerial parts of the trees, bioconcentration factor (BCF) and translocation factor (TF) were used to determine the remediation potential of the studied trees. Ficus racemosa recorded the highest BCF for both the metals, Fe and Pb. The maximum TF was recorded in T. arjuna for Fe and F. racemosa had the highest TF value for Pb. The recorded BCF and TF values suggested that these tropical tree species can be classified as efficient metal trappers for Fe and Pb. The Pb accumulation was much higher in all the four (4) tree species than the described limit for a Pb-hyperaccumulator (0.1%), revealing the hyperaccumulator potency of all the screened trees.

Keywords

Dalbergia sissoo Ficus racemosa Pithecellobium dulce Phytoremediation Terminalia arjuna 

Notes

Acknowledgements

The study was funded by the Department of Science and Technology, New Delhi in the form of DST INSPIRE (DST Inspire/IF-150198/2015) and DST-FIST (Sl. No. 270 for tenure of 2013–18). It is also supported financially by University Grants Commission, New Delhi in the form of Rajiv Gandhi National Fellowship (F1-17.1/2013-14/RGNF-2013-14-SC-CHH-36789).

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest to publish this manuscript.

References

  1. 1.
    Lasat MM (2002) Phytoextraction of toxic metals—a review of biological mechanisms. J Environ Qual 31:109–120CrossRefPubMedGoogle Scholar
  2. 2.
    Dalun T, Fan Z, Wende Y, Fang X, Wenhua X, Xiangwen D, Guangjun W, Changhui P (2008) Heavy metal accumulation by panicled goldenrain tree (Koelreuteria paniculata) and common elaeocarpous (Elaeocarpus decipens) in abandoned mine soils in southern China. J Environ Sci 21:340–345Google Scholar
  3. 3.
    Mueller JG, Chapman PJ, Pritchard PH (1989) Creosote contaminate sites. Environ Sci Technol 23:1197–1201CrossRefGoogle Scholar
  4. 4.
    Lebrun M, Macri C, Miard F, Hattab-Hambli N, Motelica-Heino M, Morabito D, Bourgerie S (2017) Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix. J Geochem Explor 182:149–156CrossRefGoogle Scholar
  5. 5.
    Gohre V, Uta Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122CrossRefPubMedGoogle Scholar
  6. 6.
    Patel KS, Shrivas K, Hoffmann P, Jakubowski N (2006) A survey of lead pollution in Chhattisgarh State, Central India. Environ Geochem Health 28(1):11–17CrossRefPubMedGoogle Scholar
  7. 7.
    Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357:38–53CrossRefPubMedGoogle Scholar
  8. 8.
    Ramana S, Srivastava S, Biswas AK, Kumar A, Singh AB, Singh D, Rajput PS (2016) Assessment of century plant (Agave americana) for remediation of chromium contaminated sites. Proc Natl Acad Sci India Sect B Biol Sci 84(4):1159–1165CrossRefGoogle Scholar
  9. 9.
    Rathore SS, Shekhawat K, Dass A, Kandpal BK, Singh VK (2017) Phytoremediation mechanism in Indian mustard (Brassica juncea) and its enhancement through agronomic interventions. Proc Natl Acad Sci India Sect B Biol Sci.  https://doi.org/10.1007/s40011-017-0885-5 CrossRefGoogle Scholar
  10. 10.
    Gonzälez-Oreja JA, Rozas MA, Alkorta I, Garbisu C (2008) Dendroremediation of heavy metal polluted soils. Rev Environ Health 23(3):223–234CrossRefPubMedGoogle Scholar
  11. 11.
    Pennock D, Yates T, Braidek J (1993) Soil sampling designs. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton, pp 25–38Google Scholar
  12. 12.
    Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack FMG, Lust N (2003) Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Pollut 126:275–282CrossRefPubMedGoogle Scholar
  13. 13.
    Baker DE, Amacher MC (1982) Nickel, copper, zinc and cadmium. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, chemical and microbiological properties. ASA Inc. SSSA Inc. Publishers, New York, pp 323–336Google Scholar
  14. 14.
    Jones JB Jr, Wolf B, Mills HA (1991) Plant analysis handbook. Micro-Macro Publishing, AthensGoogle Scholar
  15. 15.
    Baldantoni D, Cicatelli A, Bellino A, Castiglione S (2014) Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements. J Environ Manag 146:94–99CrossRefGoogle Scholar
  16. 16.
    Carrillo-Chávez A, Salas-Megchún E, Levresse G, Muñoz-Torres C, Pérez-Arvizu O, Gerke T (2014) Geochemistry and mineralogy of mine-waste material from a “skarn-type” deposit in central Mexico: modeling geochemical controls of metals in the surface environment. J Geochem Explor 144:28–36CrossRefGoogle Scholar
  17. 17.
    Komives T, Gullner G (2006) Dendroremediation: the use of trees in cleaning up polluted soils. Phytoremediation rhizoremediation. Springer, Berlin, pp 23–31CrossRefGoogle Scholar
  18. 18.
    Mleczek M, Rutkowski P, Niedzielski P, Goliński P, Gąsecka M, Kozubik T, Dąbrowski J, Budzyńska S, Pakuła J (2016) The role of selected tree species in industrial sewage sludge/flotation tailing management. Int J Phytoremediat 18:1086–1095CrossRefGoogle Scholar
  19. 19.
    Budzyńska S, Mleczek M, Goliński P, Rutkowski P, Niedzielski P (2017) The influence of As forms in substrate on the phytoextraction of this metalloid in Ulmus laevis Pall organs—pot experiment. Microchem J 134:333–340CrossRefGoogle Scholar
  20. 20.
    Mleczek M, Goliński P, Krzesłowska M, Gąsecka M, Magdziak Z, Rutkowski P, Budzyńska S, Waliszewska B, Kozubik T, Karolewski Z, Niedzielski P (2017) Phytoextraction of potentially toxic elements by six tree species growing on hazardous mining sludge. Environ Sci Pollut R 24(28):22183–22195CrossRefGoogle Scholar
  21. 21.
    De Souza SCR, Andrade SAL, De Souza LA, Schiavinato MA (2012) Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. J Environ Manag 110:299–307CrossRefGoogle Scholar
  22. 22.
    Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  23. 23.
    Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradere P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71(11):2187–2192CrossRefPubMedGoogle Scholar
  24. 24.
    Aldrich MV, Ellzey JT, Peralta-Videa JR, Gonzalez JH, Gardea-Torresdey JL (2004) Lead uptake and the effect of EDTA on lead-tissue concentration in the desert species mesquite (Prosopis spp.). Int J Phytoremediation 6(3):195–207CrossRefPubMedGoogle Scholar
  25. 25.
    Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulators, Sesbania drummondii. Environ Sci Technol 36:4676–4680CrossRefPubMedGoogle Scholar
  26. 26.
    Yang Y, Liang Y, Ghosh A, Song Y, Chen H, Tang M (2015) Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential application for phytoremediation. Environ Sci Pollut Res 22:13179–13193CrossRefGoogle Scholar
  27. 27.
    Laghlimi M, Baghdad B, El Hadi H, Bouabdli A (2015) Phytoremediation mechanisms of heavy metal contaminated soils: a review. Open J Ecol 5(08):375CrossRefGoogle Scholar
  28. 28.
    Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368(2):456–464CrossRefPubMedGoogle Scholar
  29. 29.
    Wang Y, Bai S, Wu J, Chen J, Yang Y, Zhu X, Zhu T (2015) Plumbum/zinc accumulation in seedlings of six afforestation species cultivated in mine spoil substrate. J Trop For Sci 27(2):166–175Google Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  • Inderpal Kaur
    • 1
  • Sayali Khandwekar
    • 1
  • Ravishankar Chauhan
    • 1
  • Vikram Singh
    • 2
  • S. K. Jadhav
    • 1
  • K. L. Tiwari
    • 1
  • Afaque Quraishi
    • 1
  1. 1.School of Studies in BiotechnologyPt. Ravishankar Shukla UniversityRaipurIndia
  2. 2.School of Studies in Life SciencesPt. Ravishankar Shukla UniversityRaipurIndia

Personalised recommendations