Molecular and Biochemical Characterisation of Indian Germplasm of Pisum sativum L.

  • Richa Sharma
  • Aejaz Ahmad Dar
  • Reetika Mahajan
  • Susheel SharmaEmail author
Research Article


Information about the genetic diversity of any crop is important for successful employment of breeding programmes. In the present study, an initiative was taken to characterise genetic diversity of 40 pea genotypes using twenty-four EST-SSRs and three biochemical traits. The polymorphism information content value for SSR markers ranged from 0.095 to 0.500 at an average of 0.349. Jaccard’s similarity coefficient ranged from 0.17 (Azad Pea1/IC-219010) to 0.92 (IC-219010/219008) with an average value of 0.45 exhibiting considerable genetic diversity. Forty genotypes were clustered into two major clusters A and B. Bayesian model-based programme determined population structure and divided the accessions into two major populations. The mean data of various genotypes for protein content (%), total sugar content (%) and ascorbic acid content (mg/100 g) were found in the range of 16.07 (Azad P3) to 25.09 (IC-208366), 12.65 (IC-218991) to 19.97 (Lincoln) and 3.01 (Arka Pramodh) to 5.57 (DPPIV-2), respectively. The information collected from EST-SSR markers and biochemical traits may assist pea breeders to utilise breeding programmes for the improvement of the target traits.


Pisum sativum L. Genetic diversity EST-SSRs PIC Biochemical characterisation 



The authors are grateful to SERB, DST, New Delhi, for the financial support of the project (Project sanction order No. SB/YS/LS-182/2013 dated 15/05/2014). They are also thankful to NBPGR, New Delhi, for facilitating germplasm.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest to publish this manuscript.

Supplementary material

40011_2018_1069_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 31 kb)


  1. 1.
    Bouhadida M, Srarfi F, Saadi I, Kharrat M (2013) Molecular characterization of pea (Pisum sativum L.) using microsatellite markers. IOSR J Appl Chem 5:57–61CrossRefGoogle Scholar
  2. 2.
    Sato S, Isobe S, Tabata S (2010) Structural analyses of the genomes in legumes. Curr Opin Plant Biol 13:146–152CrossRefGoogle Scholar
  3. 3.
    FAO Statistical Database (2017) Food and Agriculture Organization (FAO) of the United Nations, Rome. Accessed 28 Feb 2019
  4. 4.
    Mahesh C, Tarte G, Ashok K, Nilesh C (2014) Studies on the effect of pH and temperature on the activity of esterase enzyme isolated from Pisum sativum. Asian J Biomed Pharm Sci 3:2231–2560Google Scholar
  5. 5.
    Chakraborty U, Sarkar B, Chakraborty BN (2003) Protection of soybean root rot by Bradyrhizobium japonicum and Trichoderma harzianum, associated changes in enzyme activities and phytoalexin production. J Mycol Plant Pathol 33:21–25Google Scholar
  6. 6.
    Deepika, Mahajan R, Lay P, Sharma P, Salgotra RK, Sharma S(2017) Assessment of genetic variability, heritability and genetic advance among Pisum accessions. Vegetos 30:482–488Google Scholar
  7. 7.
    Rao NK (2004) Plant genetic resources: advancing conservation and use through biotechnology. Afr Biotechnol 3:136–145CrossRefGoogle Scholar
  8. 8.
    Tatikonda L, Wani SP, Kannan S, Varshney RK (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatrophacurcas L., a biofuel plant. Plant Sci 176:505–513CrossRefGoogle Scholar
  9. 9.
    Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55CrossRefGoogle Scholar
  10. 10.
    Squirrell J, Hollingsworth PM, Woodhead M, Russell J, Lowe AJ, Gibby M, Powell W (2003) How much effort is required to isolate nuclear microsatellites from plants? Mol Ecol 12:1339–1348CrossRefGoogle Scholar
  11. 11.
    Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analysis. Heredity 99:125–132CrossRefGoogle Scholar
  12. 12.
    Kong Q, Xiang C, Yu Z, Zhang C, Liu F, Peng C, Peng X (2007) Mining and charactering microsatellites in Cucumis melo expressed sequence tags from sequence database. Mol Ecol Notes 7:281–283CrossRefGoogle Scholar
  13. 13.
    Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  14. 14.
    Gong YM, Xu SC, Mao WH, Zhang GW, Ding J, Li YD (2010) Developing new SSR markers from ESTs of pea (Pisum sativum L.). J Zhejiang Univ Sci B Biomed Biotechnol 11:702–707Google Scholar
  15. 15.
    Mishra RK, Gangadhar BH, Nookaraju A, Kumar S, Park SW (2012) Development of EST-derived SSR markers in pea (Pisum sativum) and their potential utility for genetic mapping and transferability. Plant Breed 131:118–124CrossRefGoogle Scholar
  16. 16.
    Xu SU, Gong YM, Mao WH, Hu QZ, Zhang GW, Fu W, Xian QQ (2012) Development and characterization of 41 novel EST-SSR markers for Pisum sativum (Leguminosae). Am J Bot 2:e149–e153CrossRefGoogle Scholar
  17. 17.
    Zhuang X, McPhee KE, Coram TE, Peever TL, Chilvers MI (2013) Development and characterization of 37 novel EST-SSR markers in Pisum sativum. Appl Plant Sci 1:1200249CrossRefGoogle Scholar
  18. 18.
    Liu K, Muse SV (2005) Power marker. Integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129CrossRefGoogle Scholar
  19. 19.
    Dar AA, Mudigunda S, Mittal PK, Arumugam N (2017) Comparative assessment of genetic diversity in Sesamum indicum L. using RAPD and SSR markers. 3 Biotech 7:10. CrossRefGoogle Scholar
  20. 20.
    Dar AA, Mahajan R, Lay P, Sharma S (2017) Genetic diversity and population structure of Cucumis sativus L. by using SSR markers. 3 Biotech 7:307. CrossRefGoogle Scholar
  21. 21.
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  22. 22.
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  23. 23.
    McKenzie HA, Wallace HS (1954) The Kjeldahl’s determination of nitrogen. Austral J Chem 7:55–70CrossRefGoogle Scholar
  24. 24.
    Dubois M, Gilles KA, Smith F (1956) Calorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  25. 25.
    Sadasivam S, Manickam A (1996) Biochemical methods, 2nd edn. New Age International (p) Ltd Publisher, New Delhi, pp 179–186Google Scholar
  26. 26.
    Burstin J, Deniot G, Potier J, Weinachter C, Aubert G, Baranger A (2001) Microsatellite polymorphism in Pisum sativum. Plant Breed 120:311–317CrossRefGoogle Scholar
  27. 27.
    Gangadhar BHM, Mishra RK (2016) Comparative study of EST-SSR, SSR, RAPD, and ISSR and their transferability analysis in pea, chickpea and mungbean. Eur Acad Res 4:1346Google Scholar
  28. 28.
    Nisar M, Khan A, Wadood SF, Shah AA, Hanci F (2017) Molecular characterization of edible pea through EST-SSR markers. Turk J Bot 41:338–346CrossRefGoogle Scholar
  29. 29.
    Kapila K, Naryal S, Dhiman KC (2011) Analysis of genetic diversity among garden and field pea genotypes of higher Indian Himalayas. J Plant Biochem Biotechnol. Google Scholar
  30. 30.
    Choudhury RP, Tanveer H, Dixit GP (2007) Identification and detection of genetic relatedness among important varieties of pea (Pisum sativum L.) grown in India. Genetica 130:183–191CrossRefGoogle Scholar
  31. 31.
    Thakur B, Sharma S, Sharma I, Sharma P, Deepika Zargar SM (2018) Diversity analysis of pea genotypes using RAPD markers. Legume Res 41:196–201Google Scholar
  32. 32.
    Ahmad S, Kaur S (2015) Genetic diversity and population structure of Pisum sativum accessions for marker-trait association of lipid content. Crop J 3:238–245CrossRefGoogle Scholar
  33. 33.
    Saharan K, Khetarpaul N (1994) Protein quality traits of vegetable and field peas: varietal differences. Plant Foods Hum Nutr 45:11–22CrossRefGoogle Scholar
  34. 34.
    Harmankaya M, Ozcan MM, Kardas S, Ceyhan E (2010) Protein and mineral contents of pea (Pisum sativum L.) genotypes grown in central region of Turkey. South West J Hortic Biol Environ 1:159–165Google Scholar

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  • Richa Sharma
    • 1
  • Aejaz Ahmad Dar
    • 1
  • Reetika Mahajan
    • 1
  • Susheel Sharma
    • 1
    Email author
  1. 1.Sher-e-Kashmir University of Agricultural Sciences and Technology of JammuChatha, JammuIndia

Personalised recommendations