Advertisement

A Review on Basic Biology of Bacterial Biofilm Infections and Their Treatments by Nanotechnology-Based Approaches

  • Debjani Banerjee
  • P. M. Shivapriya
  • Pavan Kumar Gautam
  • Krishna Misra
  • Amaresh Kumar Sahoo
  • Sintu Kumar SamantaEmail author
Review
  • 29 Downloads

Abstract

Biofilms are responsible for causing 80% of human infections including chronic infections like-cystic fibrosis, endocarditis and osteomyelitis. The growing ability of the biofilm to resist most of the available antibiotics has caused a serious threat to different life forms. Plenty of research work has already been reported, and some are ongoing to combat this serious health issue worldwide. Recent developments in nanotechnology have given a great boost in dealing biofilm infections. The unique size-dependent properties for antibacterial and antibiofilm activities provide the nanoparticles better options to eradicate biofilms. Here, the authors have discussed the basic biology of bacterial biofilm and their impact on human health. In addition, different nanotechnology-based strategies to overcome serious health issues caused by biofilm infections have been highlighted.

Keywords

Bacterial biofilm infections Human health Nanotechnology Quorum sensing 

Notes

Acknowledgements

The authors Debjani Banerjee and P. M. Shivapriya are thankful to MHRD, Govt. of India and Pavan Kumar Gautam to DST for fellowship. They would like to acknowledge Indian Institute of Information Technology, Allahabad, for providing Institutional Seed Grant project for financial assistance.

Compliance with Ethical Standards

Conflict of interest

The authors have no conflict of interest to publish this manuscript.

References

  1. 1.
    Costerton JW (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322.  https://doi.org/10.1126/science.284.5418.1318 CrossRefPubMedGoogle Scholar
  2. 2.
    O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54(1):49–79.  https://doi.org/10.1146/annurev.micro.54.1.49 CrossRefGoogle Scholar
  3. 3.
    Romling U, Kjelleberg S, Normark S, Nyman L, Uhlin BE, Akerlund B (2014) Microbial biofilm formation: a need to act. J Intern Med 276(2):98–110.  https://doi.org/10.1111/joim.12242 CrossRefPubMedGoogle Scholar
  4. 4.
    Wolcott RD, Rhoads DD, Bennett ME, Wolcott BM, Gogokhia L, Costerton JW, Dowd SE (2010) Chronic wounds and the medical biofilm paradigm. J Wound Care 19(2):45–46, 8–50, 2–3.  https://doi.org/10.12968/jowc.2010.19.2.46966
  5. 5.
    Soleimani N, Mobarez A, Olia M, Atyabi F (2015) Synthesis, characterization and effect of the antibacterial activity of chitosan nanoparticles on vancomycin-resistant Enterococcus and other gram negative or gram positive bacteria. Int J Pure Appl Sci Technol 26(1):14–23Google Scholar
  6. 6.
    Schembri MA, Kjærgaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48(1):253–267.  https://doi.org/10.1046/j.1365-2958.2003.03432.x CrossRefPubMedGoogle Scholar
  7. 7.
    Thoendel M, Kavanaugh JS, Flack CE, Horswill AR (2011) Peptide signaling in the Staphylococci. Chem Rev 111:117–151.  https://doi.org/10.1021/cr100370n CrossRefPubMedGoogle Scholar
  8. 8.
    Robertson SR, McLean RJ (2015) Beneficial biofilms. AIMS Bioeng 2(4):437–448.  https://doi.org/10.3934/bioeng.2015.4.437 CrossRefGoogle Scholar
  9. 9.
    Ramasamy M, Lee J (2016) Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. Biomed Res Int 2016:1851242.  https://doi.org/10.1155/2016/1851242 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890.  https://doi.org/10.3201/eid0809.020063 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Evans LV (2000) Biofilms: recent advances in their study and control. Harwood Academic, AmsterdamGoogle Scholar
  12. 12.
    Dunne WM (2002) Bacterial adhesion: Seen any good biofilms lately? Clin Microbiol Rev 15(2):155–166.  https://doi.org/10.1128/CMR.15.2.155-166.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cohen BE (2014) Functional linkage between genes that regulate osmotic stress responses and multidrug resistance transporters: challenges and opportunities for antibiotic discovery. Antimicrob Agents Chemother 58(2):640–646.  https://doi.org/10.1128/AAC.02095-13 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rasamiravaka T, Labtani Q, Duez P, El Jaziri M (2015) The formation of biofilms by Pseudomonas aeruginosa : a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int 2015:1–17.  https://doi.org/10.1155/2015/759348 CrossRefGoogle Scholar
  15. 15.
    Asally M et al (2012) Localized cell death focuses mechanical forces during 3D patterning in a biofilm. PNAS 109(46):18891–18896.  https://doi.org/10.1073/pnas.1212429109 CrossRefPubMedGoogle Scholar
  16. 16.
    Rathsam C, Eaton RE, Simpson CL, Browne GV, Valova VA, Harty DWS, Jacques NA (2005) Two-dimensional fluorescence difference gel electrophoretic analysis of Streptococcus mutans biofilms. J Proteome Res 4:2161–2173CrossRefPubMedGoogle Scholar
  17. 17.
    Islam N, Kim Y, Ross JM, Marten MR (2014) Proteome analysis of Staphylococcus aureus biofilm cells grown under physiologically relevant fluid shear conditions. Proteome Sci 12:21.  https://doi.org/10.1186/1477-5956-12-21 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Qayyum S, Sharma D, Bisht D, Khan AU (2016) Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: a proteomic approach. Biochem Biophys Res Commun 474:652–659.  https://doi.org/10.1016/j.bbrc.2016.04.145 CrossRefPubMedGoogle Scholar
  19. 19.
    Tielen P, Rosin N, Meyer AK, Dohnt K, Haddad I, Jänsch L, Klein J, Narten M, Pommerenke C, Scheer M, Schobert M, Schomburg D, Thielen B, Jahn D (2013) Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions. PLoS ONE 8(8):e71845.  https://doi.org/10.1371/journal.pone.0071845 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Otto M (2013) Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med 64:175–188.  https://doi.org/10.1146/annurev-med-042711-140023 CrossRefPubMedGoogle Scholar
  21. 21.
    Annous BA, Fratamico PM, Smith JL (2009) Scientific status summary: quorum sensing in biofilms: Why bacteria behave the way they do? J Food Sci 74(1):R24–R37.  https://doi.org/10.1111/j.1750-3841.2008.01022.x CrossRefPubMedGoogle Scholar
  22. 22.
    Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 99:3129–3134.  https://doi.org/10.1073/pnas.052694299 CrossRefPubMedGoogle Scholar
  23. 23.
    Singh BN, Prateeksha UDK, Singh BR, Defoirdt T, Gupta VK, Vahabi K (2016) Bactericidal, quorum quenching and anti-biofilm nanofactories: a new niche for nanotechnologists. Crit Rev Biotechnol 37(4):525–540.  https://doi.org/10.1080/07388551.2016.1199010 CrossRefPubMedGoogle Scholar
  24. 24.
    Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. PNAS 104:11197–11202.  https://doi.org/10.1073/pnas.0704624104 CrossRefPubMedGoogle Scholar
  25. 25.
    Lewandowski Z, Evans LV (2000) Structure and function of biofilms: recent advances in their study and control. Harwood Academic Publishers, Amsterdam, pp 1–17Google Scholar
  26. 26.
    Bigger J (1944) Treatment of staphylococcal infections with penicillin-by intermittent sterilisation. Lancet 2:497–500CrossRefGoogle Scholar
  27. 27.
    Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40.  https://doi.org/10.1016/j.tim.2004.11.010 CrossRefPubMedGoogle Scholar
  28. 28.
    Vinodkumar C, Kalsurmath S, Neelagund Y (2008) Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice. Indian J Pathol Microbiol 51:360.  https://doi.org/10.4103/0377-4929.42511 CrossRefPubMedGoogle Scholar
  29. 29.
    Waldrop R, McLaren A, Calara F, McLemore R (2014) Biofilm growth has a threshold response to glucose in vitro. Clin Orthop Relat Res 472(11):3305–3310.  https://doi.org/10.1007/s11999-014-3538-5 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Purevdorj B, Costerton JW, Stoodley P (2002) Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68(9):4457–4464CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sun J, Ziqing D, Aixin Y (2014) Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453(2):254–267.  https://doi.org/10.1016/j.bbrc.2014.05.090 CrossRefPubMedGoogle Scholar
  32. 32.
    Wang L, Slayden RA, Barry CE III, Liu J (2000) Cell wall structure of a mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids. J Biol Chem 275:7224–7229CrossRefPubMedGoogle Scholar
  33. 33.
    Neut D, Van Der Mei C, Bulstra HK, Busscher H (2007) The role of small-colony variants in failure to diagnose and treat biofilm infections in orthopedics. Acta Orthop Scand 78:299–308.  https://doi.org/10.1080/17453670710013843 CrossRefGoogle Scholar
  34. 34.
    Høiby N, Frederiksen B, Pressler T (2005) Eradication of early Pseudomonas aeruginosa infection. J Cyst Fibros 4:49–54.  https://doi.org/10.1016/j.jcf.2005.05.018 CrossRefPubMedGoogle Scholar
  35. 35.
    Daniel M, Chessman R, Al-Zahid S, Richards B, Rahman C, Ashraf W, McLaren J, Cox H, Qutachi O, Fortnum H, Fergie N, Shakesheff K, Birchall JP, Bayston RR (2012) Biofilm eradication with biodegradable modified-release antibiotic pellets: a potential treatment for glue ear. Arch Otolaryngol Head Neck Surg 138(10):942–949.  https://doi.org/10.1001/archotol.2013.238 CrossRefPubMedGoogle Scholar
  36. 36.
    Gnanadhas DP, Elango M, Janardhanraj S et al (2015) Successful treatment of biofilm infections using shock waves combined with antibiotic therapy. Sci Rep 5:17440.  https://doi.org/10.1038/srep17440 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764.  https://doi.org/10.1038/35037627 CrossRefPubMedGoogle Scholar
  38. 38.
    Kokare CR, Chakraborty S, Khopade AN, Mahadik KR (2009) Biofilm: importance and applications. Indian J Biotechnol 8(2):159–168Google Scholar
  39. 39.
    Long B, Koyfman A (2018) Infectious endocarditis: an update for emergency clinicians. Am J Emerg Med 36(9):1686–1692.  https://doi.org/10.1016/j.ajem.2018.06.074 CrossRefPubMedGoogle Scholar
  40. 40.
    Kokare CR, Kadam SS, Mahadik KR, Chopade BA (2007) Studies on bioemulsier production from marine Streptomyces sp. S1. Indian J Biotechnol 6(1):78–84Google Scholar
  41. 41.
    Overman PR (2007) Biofilm : a new view of plaque. J Contemp Dent Pract 1(3):18–29Google Scholar
  42. 42.
    Kumar V, Robbins SL (eds) (2007) Robbins basic pathology, 8th edn. Elsevier, PhiladelphiaGoogle Scholar
  43. 43.
    Alhede M, Alhede M (2014) The biofilm challenge. EWMA J 14:1–5Google Scholar
  44. 44.
    Gjødsbøl K, Christensen JJ, Karlsmark T, Jørgensen B, Klein BM, Krogfelt KA (2006) Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 3:225–231.  https://doi.org/10.1111/j.1742-481X.2006.00159.x CrossRefPubMedGoogle Scholar
  45. 45.
    Bowling FL, Jude EB, Boulton AJM (2009) MRSA and diabetic foot wounds: contaminating or infecting organisms? Curr Diab Rep 9:440.  https://doi.org/10.1007/s11892-009-0072-z CrossRefPubMedGoogle Scholar
  46. 46.
    Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58.  https://doi.org/10.1111/apm.12099 CrossRefGoogle Scholar
  47. 47.
    Foreman A, Wormald PJ (2010) Different biofilms, different disease? A clinical outcomes study. The Laryngoscope 120:1701–1706.  https://doi.org/10.1002/lary.21024 CrossRefPubMedGoogle Scholar
  48. 48.
    Tambyah PA (2004) Catheter-associated urinary tract infections: diagnosis and prophylaxis. Int J Antimicrob Agents 24:44–48.  https://doi.org/10.1016/j.ijantimicag.2004.02.008 CrossRefGoogle Scholar
  49. 49.
    Niveditha SN (2012) The isolation and the biofilm formation of uropathogens in the patients with catheter associated urinary tract infections (UTIs). J Clin Diagn Res.  https://doi.org/10.7860/jcdr/2012/4367.2537 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CI, Bleazard JB, Duffy JE, Beyenal H, Lewandowski Z (2003) Compromised host defence on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171:4329–4339.  https://doi.org/10.4049/jimmunol.171.8.4329 CrossRefPubMedGoogle Scholar
  51. 51.
    Bjarnsholt T, Jensen PØ, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Høiby N (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44:547–558.  https://doi.org/10.1002/ppul.21011 CrossRefPubMedGoogle Scholar
  52. 52.
    Kolpen M et al (2009) Polymorphonuclear leukocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax.  https://doi.org/10.1136/thx.2009.114512 CrossRefPubMedGoogle Scholar
  53. 53.
    McKeon DJ, Cadwallader KA, Idris S, Cowburn AS, Pasteur MC, Barker H, Haworth CS, Bilton D, Chilvers ER, Condliffe AM (2010) Cystic fibrosis neutrophils have normal intrinsic reactive oxygen species generation. Eur Respir J 35:1264–1272.  https://doi.org/10.1183/09031936.00089709 CrossRefPubMedGoogle Scholar
  54. 54.
    Volk APD, Barber BM, Goss KL, Ruff JG, Heise CK, Hook JS, Moreland JG (2011) Priming of neutrophils and differentiated PLB-985 cells by pathophysiological concentrations of TNF-α: is partially oxygen dependent. J Innate Immun 3:298–314.  https://doi.org/10.1159/000321439 CrossRefPubMedGoogle Scholar
  55. 55.
    Alhede M, Bjarnsholt T, Jensen PO, Phipps RK, Moser C, Christophersen L, Christensen LD, van Gennip M, Parsek M, Hoiby N, Rasmussen TB, Givskov M (2009) Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155:3500–3508.  https://doi.org/10.1099/mic.0.031443-0 CrossRefPubMedGoogle Scholar
  56. 56.
    Stewart PS, William Costerton J (2001) Antibiotic resistance of bacteria in biofilms. The Lancet 358:135–138.  https://doi.org/10.1016/S0140-6736(01)05321-1 CrossRefGoogle Scholar
  57. 57.
    de Beer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43:1131–1138.  https://doi.org/10.1002/bit.260431118 CrossRefPubMedGoogle Scholar
  58. 58.
    Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58.  https://doi.org/10.1111/apm.12099 CrossRefGoogle Scholar
  59. 59.
    Nadell CD, Xavier JB, Foster KR (2009) Thesociobiology of biofilms. FEMS Microbiol Rev 33:206–224.  https://doi.org/10.1111/j.1574-6976.2008.00150.x CrossRefPubMedGoogle Scholar
  60. 60.
    Camargo LFA, Marra AR, Büchele GL, Sogayar AMC, Cal RGR, de Sousa JMA, Silva E, Knobel E, Edmond MB (2009) Double-lumen central venous catheters impregnated with chlorhexidine and silver sulfadiazine to prevent catheter colonisation in the intensive care unit setting: a prospective randomised study. J Hosp Infect 72:227–233.  https://doi.org/10.1016/j.jhin.2009.03.018 CrossRefPubMedGoogle Scholar
  61. 61.
    Bayston R, Fisher LE, Weber K (2009) An antimicrobial modified silicone peritoneal catheter with activity against both Gram positive and Gram negative bacteria. Biomaterials 30:3167–3173.  https://doi.org/10.1016/j.biomaterials.2009.02.028 CrossRefPubMedGoogle Scholar
  62. 62.
    Bordi C, de Bentzmann S (2011) Hacking into bacterial biofilms: a new therapeutic challenge. Ann Intensive Care 1:19.  https://doi.org/10.1186/2110-5820-1-19 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnolt 31:295–304.  https://doi.org/10.1016/j.tibtech.2013.01.017 CrossRefGoogle Scholar
  64. 64.
    Roosjen A, van der Mei HC, Busscher HJ, Norde W (2004) Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. Langmuir 20:10949–10955.  https://doi.org/10.1021/la048469l CrossRefPubMedGoogle Scholar
  65. 65.
    Sousa C, Henriques M, Oliveira R (2011) Mini-review: antimicrobial central venous catheters–recent advances and strategies. Biofouling 27(6):609–620.  https://doi.org/10.1080/08927014.2011.593261 CrossRefPubMedGoogle Scholar
  66. 66.
    Sun L, Zhang C, Li P (2012) Characterization, antibiofilm, and mechanism of action of novel PEG-stabilized lipid nanoparticles loaded with terpinen-4-ol. J Agric Food Chem 60:6150–6156.  https://doi.org/10.1021/jf3010405 CrossRefPubMedGoogle Scholar
  67. 67.
    Webster T, Taylor J (2011) Reducing infections through nanotechnology and nanoparticles. Int J Nanomed.  https://doi.org/10.2147/ijn.s22021 CrossRefGoogle Scholar
  68. 68.
    Suci PA, Berglund DL, Liepold L, Brumfield S, Pitts B, Davison W, Oltrogge L, Hoyt KO, Codd S, Stewart PS, Young M, Douglas T (2007) High-density targeting of a viral multifunctional nanoplatform to a pathogenic, biofilm-forming bacterium. Chem Biol 14:387–398.  https://doi.org/10.1016/j.chembiol.2007.02.006 CrossRefPubMedGoogle Scholar
  69. 69.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346CrossRefPubMedGoogle Scholar
  70. 70.
    Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720.  https://doi.org/10.1128/AEM.02218-06 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287.  https://doi.org/10.1021/es1034188 CrossRefPubMedGoogle Scholar
  72. 72.
    Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371CrossRefPubMedGoogle Scholar
  73. 73.
    Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Altern Med 2015:1–16.  https://doi.org/10.1155/2015/246012 CrossRefGoogle Scholar
  74. 74.
    Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76.  https://doi.org/10.1111/j.1574-6968.2007.01012.x CrossRefPubMedGoogle Scholar
  75. 75.
    Baker C, Pradhan A, Pakstis L, Pochan D, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. JNN 5:244–249.  https://doi.org/10.1166/jnn.2005.034 CrossRefGoogle Scholar
  76. 76.
    Ellis JR (2007) The many roles of silver in infection prevention. Am J Infect Control 35:E26.  https://doi.org/10.1016/j.ajic.2007.04.017 CrossRefGoogle Scholar
  77. 77.
    Ansari M, Khan H, Khan A, Cameotra S, Alzohairy M (2015) Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol 33:101.  https://doi.org/10.4103/0255-0857.148402 CrossRefPubMedGoogle Scholar
  78. 78.
    Ahmed B, Hashmi A, Khan MS, Musarrat J (2018) ROS mediated destruction of cell membrane, growth and biofilms of human bacterial pathogens by stable metallic AgNPs functionalized from bell pepper extract and quercetin. Microb Pathog 111:375–387.  https://doi.org/10.1016/j.micpath.2017.09.019 CrossRefGoogle Scholar
  79. 79.
    Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat A (2015) Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. J PLoS ONE 110(7):e0131178.  https://doi.org/10.1371/journal.pone.0131178 CrossRefGoogle Scholar
  80. 80.
    Lee J-H, Kim Y-G, Cho MH, Lee J (2014) ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Res Microbiol 169:888–896.  https://doi.org/10.1016/j.micres.2014.05.005 CrossRefGoogle Scholar
  81. 81.
    Dhillon GS, Kaur S, Brar SK (2014) Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity. Int Nano Lett.  https://doi.org/10.1007/s40089-014-0107-6 CrossRefGoogle Scholar
  82. 82.
    Abdulkareem EH, Memarzadeh K, Allaker RP et al (2015) Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. J Dent 43:1462–1469.  https://doi.org/10.1016/j.jdent.2015.10.010 CrossRefPubMedGoogle Scholar
  83. 83.
    Applerot G, Lellouche J, Perkas N, Nitzan Y, Gedanken A, Banin E (2012) ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv 2:2314–2321CrossRefGoogle Scholar
  84. 84.
    Al-Shabib NA, Husain FM, Hassan I et al (2018) Biofabrication of zinc oxide nanoparticle from Ochradenusbaccatus leaves: broad-spectrum antibiofilm activity, protein binding studies, and in vivo toxicity and stress studies. J Nanomater 2018:1–14.  https://doi.org/10.1155/2018/8612158 CrossRefGoogle Scholar
  85. 85.
    Roudbar Mohammadi S, Mohammadi P, Hosseinkhani S, Shipour R (2013) Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect Epidemiol Med 1:33–38CrossRefGoogle Scholar
  86. 86.
    Ohko Y, Nagao Y, Okano K, Sugiura N, Fukuda A, Yang Y, Negishi N, Takeuchi M, Hanada S (2009) Prevention of Phormidium tenue biofilm formation by TiO2 photocatalysis. Microbes Environ 24:241–245.  https://doi.org/10.1264/jsme2.ME09106 CrossRefPubMedGoogle Scholar
  87. 87.
    Khan ST, Ahmad J, Ahamed M et al (2016) Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis. JBIC 21:295–303.  https://doi.org/10.1007/s00775-016-1339-x CrossRefPubMedGoogle Scholar
  88. 88.
    Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590.  https://doi.org/10.1016/j.ijantimicag.2008.12.004 CrossRefPubMedGoogle Scholar
  89. 89.
    Eshed M, Lellouche J, Matalon S, Gedanken A, Banin E (2012) Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model. Langmuir 28:12288–12295.  https://doi.org/10.1021/la301432a CrossRefPubMedGoogle Scholar
  90. 90.
    LewisOscar F, MubarakAli D, Nithya C et al (2015) One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling 31:379–391.  https://doi.org/10.1080/08927014.2015.1048686 CrossRefPubMedGoogle Scholar
  91. 91.
    Agarwala M, Choudhury B, Yadav RNS (2014) Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian J Microbiol 54:365–368.  https://doi.org/10.1007/s12088-014-0462-z CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Eshed M, Lellouche J, Gedanken A, Banin E (2014) A Zn-doped CuO nanocomposite shows enhanced antibiofilm and antibacterial activities against Streptococcus mutans compared to nanosized CuO. Adv Funct Mater 24:1382–1390.  https://doi.org/10.1002/adfm.201302425 CrossRefGoogle Scholar
  93. 93.
    Singh A, Ahmed A, Prasad KN, Khanduja S, Singh SK, Srivastava JK, Gajbhiye NS (2015) Antibiofilm and membrane-damaging potential of cuprous oxide nanoparticles against Staphylococcus aureus with reduced susceptibility to vancomycin. Antimicrob Agents Chemother 59:6882–6890.  https://doi.org/10.1128/AAC.01440-15 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M (2016) Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep 6:26667CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Chen W-Y, Lin J-Y, Chen W-J, Luo L, Wei-Guang Diau E, Chen Y-C (2010) Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria. Nanomedicine 5:755–764.  https://doi.org/10.2217/nnm.10.43 CrossRefPubMedGoogle Scholar
  96. 96.
    deAlteriis E, Maselli V, Falanga A et al (2018) Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates. Infect Drug Resist 11:915–925.  https://doi.org/10.2147/IDR.S164262 CrossRefGoogle Scholar
  97. 97.
    Vinoj G, Pati R, Sonawane A, Vaseeharan B (2015) In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against Proteus species. Antimicrob Agents Chemother 59:763–771.  https://doi.org/10.1128/AAC.03047-14 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Manju S, Malaikozhundan B, Vijayakumar S, Shanthi S, Jaishabanu A, Ekambaram P, Vaseeharan B (2016) Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles. Microb Pathog 91:129–135.  https://doi.org/10.1016/j.micpath.2015.11.021 CrossRefPubMedGoogle Scholar
  99. 99.
    Gopinath K, Kumaraguru S, Bhakyaraj K, Mohan S, Venkatesh KS, Esakkirajan M, Kaleeswarran P, Alharbi NS, Kadaikunnan S, Govindarajan M, Benelli G, Arumugam A (2016) Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb Pathog 101:1–11.  https://doi.org/10.1016/j.micpath.2016.10.011 CrossRefPubMedGoogle Scholar
  100. 100.
    Haghighi F, Mohammadi SR, Mohammadi P, Hosseinkhani S, Shidpour R (2013) Antifungal Activity of TiO2 nanoparticles and EDTA on Candida albicans Biofilms. Infect Epidemiol Med 1:33–38CrossRefGoogle Scholar
  101. 101.
    Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43:2648–2653.  https://doi.org/10.1021/es8031506 CrossRefPubMedGoogle Scholar
  102. 102.
    Lichter JA, Rubner MF (2009) Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations. Langmuir 25:7686–7694.  https://doi.org/10.1021/la900349c CrossRefPubMedGoogle Scholar
  103. 103.
    Nevius BA, Chen YP, Ferry JL, Decho AW (2012) Surface-functionalization effects on uptake of fluorescent polystyrene nanoparticles by model biofilms. Ecotoxicology 21:2205–2213.  https://doi.org/10.1007/s10646-012-0975-3 CrossRefPubMedGoogle Scholar
  104. 104.
    Lee ALZ, Ng VWL, Wang W, Hedrick JL, Yang YY (2013) Block copolymer mixtures as antimicrobial hydrogels for biofilm eradication. Biomaterials 34:10278–10286.  https://doi.org/10.1016/j.biomaterials.2013.09.029 CrossRefPubMedGoogle Scholar
  105. 105.
    Tamilvanan S, Venkateshan N, Ludwig A (2008) The potential of lipid- and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. J Control Release 128:2–22.  https://doi.org/10.1016/j.jconrel.2008.01.006 CrossRefPubMedGoogle Scholar
  106. 106.
    DiTizio V, Ferguson GW, Mittelman MW, Khoury AE, Bruce AW, Di Cosmo F (1998) A liposomal hydrogel for the prevention of bacterial adhesion to catheters. Biomaterials 19:1877–1884.  https://doi.org/10.1016/S0142-9612(98)00096-9 CrossRefPubMedGoogle Scholar
  107. 107.
    Al-Adham ISI, Al-Hmoud ND, Khalil E, Kierans M, Collier PJ (2003) Microemulsions are highly effective anti-biofilm agents. Lett Appl Microbiol 36:97–100.  https://doi.org/10.1046/j.1472-765X.2003.01266.x CrossRefPubMedGoogle Scholar
  108. 108.
    Al-Adham ISI, Ashour H, Al-Kaissi E, Khalil E, Kierans M, Collier PJ (2013) Studies on the kinetics of killing and the proposed mechanism of action of microemulsions against fungi. Int J Pharm 454:226–232.  https://doi.org/10.1016/j.ijpharm.2013.06.049 CrossRefPubMedGoogle Scholar
  109. 109.
    Ramalingam K, Frohlich NC, Lee VA (2013) Effect of nanoemulsion on dental unit waterline biofilm. J Dent 8:333–336.  https://doi.org/10.1016/j.jds.2013.02.035 CrossRefGoogle Scholar
  110. 110.
    Janiszewska J, Swieton J, Lipkowski AW, Urbanczyk-Lipkowska Z (2003) Low molecular mass peptide dendrimers that express antimicrobial properties. Bioorg Med Chem Lett 13:3711–3713.  https://doi.org/10.1016/j.bmcl.2003.08.009 CrossRefPubMedGoogle Scholar
  111. 111.
    Johansson EMV, Crusz SA, Kolomiets E, Buts L, Kadam RU, Cacciarini M, Bartels K-M, Diggle SP, Cámara M, Williams P, Loris R, Nativi C, Rosenau F, Jaeger K-E, Darbre T, Reymond J-L (2008) Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem Biol 15:1249–1257.  https://doi.org/10.1016/j.chembiol.2008.10.009 CrossRefPubMedGoogle Scholar
  112. 112.
    Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042.  https://doi.org/10.1021/cr5004198 CrossRefPubMedGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  • Debjani Banerjee
    • 1
  • P. M. Shivapriya
    • 1
  • Pavan Kumar Gautam
    • 1
  • Krishna Misra
    • 1
  • Amaresh Kumar Sahoo
    • 1
  • Sintu Kumar Samanta
    • 1
    Email author
  1. 1.Department of Applied SciencesIndian Institute of Information Technology AllahabadAllahabadIndia

Personalised recommendations