Biodiversity and In Vitro Inhibition Study of Fungal Endophytes of Chlorophytum borivilianum Against Selected Phytopathogens

  • Kanika ChowdharyEmail author
  • Nutan Kaushik
Research Article


In a quest to find remedy against chemical fungicides, a tropical medicinal plant Chlorophytum borivilianum Sant and Fern., was selected for exploring diversity of endophytic fungal community and their biocontrol potential towards phytopathogens Botrytis cinerea, Fusarium oxysporum, Sclerotinia sclerotiorum and Rhizoctonia solani. From 209 leaf tissues of C. borivilianum brought from Delhi and Hyderabad, 51 endophytic fungal isolates were attained. Sequence analysis of PCR amplified rDNA ITS region grouped these endophytic fungal isolates into 12 genera. The most frequent species was Fusarium proliferatum (17.6%). Shannon diversity index (\({\text{H}}^{{\prime }}\)) was found to be higher in Delhi (1.850) than Hyderabad (0.693) in 2010. Previously unknown as endophytes, plant pathogenic fungi Rhizoctonia bataticola and Setosphaeria rostrata have been reported from C. borivilianum. Bipolaris maydis, Diaporthe phaseolorum, Fusarium solani, Macrophomina phaseolina and R. bataticola were recovered from Delhi during first collection as deduced by principal component analysis. About 9.8% of endophytic fungal isolates exhibited anti-plant pathogenic fungi. F. proliferatum recovered from Delhi in 2011 displayed highly effective antifungal activity against all phytopathogens with IC50 value ranging from 0.527 to 2.119 mg/ml.


Chlorophytum borivilianum Endophytic fungi Principal component analysis Antifungal activity 



The authors are grateful to The Energy and Resources Institute for infrastructural services. Kanika Chowdhary humbly acknowledges the Financial Grant (JRF and SRF) of CSIR No. 09/550 (0037) 2009-EMR-1.

Compliance with Ethical Standards

Conflict of interest

The authors confirm non-existence of any conflict of interest.

Supplementary material

40011_2017_924_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)


  1. 1.
    Kothari SK (2004) Safed musli (Chlorophytum borivilianum) revisited. J Med Aromat Plant Sci 26:60–63Google Scholar
  2. 2.
    Acharya D, Mitaine-Offer AC, Kaushik N, Miyamoto T, Paululat T, Mirjolet JF et al (2009) Cytotoxic spirostane-type saponins from the roots of Chlorophytum borivilianum. J Nat Prod 72(1):177–181CrossRefGoogle Scholar
  3. 3.
    Chakraborthy GS, Aeri V (2009) Phytochemical and antimicrobial studies of Chlorophytum borivilianum. Int J Pharm Sci Drug Res 1(2):110–112Google Scholar
  4. 4.
    Deore SL, Khadabadi SS (2007) In vitro antimicrobial studies of Chlorophytum borivilianum (liliaceae) root extracts. Asian J Microbiol Biotechnol Environ Sci 9(4):807–809Google Scholar
  5. 5.
    Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544CrossRefGoogle Scholar
  6. 6.
    Chowdhary K, Kaushik N, Coloma AG, Raimundo CM (2012) Endophytic fungi and their metabolites isolated from Indian medicinal plant. Phytochem Rev 11:467–485CrossRefGoogle Scholar
  7. 7.
    Ferreira MC, Vieira MLA, Zani CL, Alves TMA, Junior PAS et al (2015) Molecular phylogeny, diversity, symbiosis and discover of bioactive compounds of endophytic fungi associated with the medicinal Amazonian plant Carapa guianensis Aublet (Meliaceae). Biochem Syst Ecol 59:36–44CrossRefGoogle Scholar
  8. 8.
    Chowdhary K, Kaushik N (2015) Fungal endophyte diversity and bioactivity in the Indian medicinal plant Ocimum sanctum Linn. PLoS ONE 10(11):e0141444CrossRefGoogle Scholar
  9. 9.
    Davari N, Jouri MH and Ariapour A (2011) Comparison of measurement indices of diversity, richness, dominance, and evenness in rangeland ecosystem (case study: Jvaherdeh-Ramesar). J Rangeland Sci 2(1):389–398Google Scholar
  10. 10.
    de Souza Sebastianes FL, Romao-Dumaresq AS, Lacava PT, Harakava R, Azevedo JL, de Melo IS, Pizzirani-Kleiner AA (2013) Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr Genet 59(3):153–166CrossRefGoogle Scholar
  11. 11.
    Naik BS, Shashikala J, Krishnamurthy YL (2008) Diversity of endophytic fungal communities in shrubby medicinal plants of Western Ghat region, Southern India. Fungal Ecol 1:89–93CrossRefGoogle Scholar
  12. 12.
    Helander M, Ahlholm J, Sieber TN, Hinneri S, Saikkonen K (2007) Fragmented environment affects birch leaf endophytes. New Phytol 175(3):547–553CrossRefGoogle Scholar
  13. 13.
    Vieira ML, Hughes AF, Gil VB, Vaz AB, Alves TM, Zani CL, Rosa CA, Rosa LH (2012) Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can J Microbiol 58(1):54–66CrossRefGoogle Scholar
  14. 14.
    Siriwach R, Kinoshita H, Kitani S, Igarashi Y, Pansuksan K, Panbangred W, Nihira T (2014) Bipolamides A and B, triene amides isolated from the endophytic fungus Bipolaris sp. MU34. J Antibiot 67:167–170CrossRefGoogle Scholar
  15. 15.
    Wang XJ, Min CL, Ge M, Zuo RH (2014) An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr Microbiol 68(3):336–341CrossRefGoogle Scholar
  16. 16.
    Xiong Z-Q, Yang Y-Y, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus × media. BMC Microbiol 13:71CrossRefGoogle Scholar
  17. 17.
    Kumar S, Kaushik N (2013) Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil 511 and exhibit antifungal activity. PLoS ONE 8(2):e56202CrossRefGoogle Scholar
  18. 18.
    Liu JT, Lu XL, Liu XY, Gao Y, Hu B, Jiao BH, Zheng H (2013) Bioactive natural products from the antarctic and arctic organisms. Mini Rev Med Chem 13(4):617–626CrossRefGoogle Scholar
  19. 19.
    Zhao J, Shan T, Mou Y, Zhou L (2012) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11:159–168CrossRefGoogle Scholar
  20. 20.
    Gautam AK (2014) Diversity of fungal endophytes in some medicinal plants of Himachal Pradesh, India. Arch Phytopathol Plant Prot 47(5):537–544CrossRefGoogle Scholar
  21. 21.
    Devari S, Jaglan S, Kumar M, Deshidi R, Guru S, Bhushan S, Kushwaha M et al (2014) Capsaicin production by Alternaria alternata, an endophytic fungus from Capsicum annum; LC-ESI-MS/MS analysis. Phytochemistry 98:183–189CrossRefGoogle Scholar
  22. 22.
    Wang Y, Yang MH, Wang XB, Li TX, Kong LY (2014) Bioactive metabolites from the endophytic fungus Alternaria alternata. Fitoterapia 99:153–158CrossRefGoogle Scholar
  23. 23.
    Rosa LH, Tabanca N, Techen N, Pan Z, Wedge DE, Moraes RM (2012) Antifungal activity of extracts from endophytic fungi associated with Smallanthus maintained in vitro as autotrophic cultures and as pot plants in the greenhouse. Can J Microbiol 58(10):1202–1211CrossRefGoogle Scholar
  24. 24.
    Gogoi DK, Mazumder S, Saikia R, Bora TC (2008) Impact of submerged culture conditions on growth and bioactive metabolite produced by endophyte Hypocrea spp. NSF-08 isolated from Dillenia indica Linn. in North-East India. J Mycol Méd 18(1):1–9CrossRefGoogle Scholar
  25. 25.
    Paul NC, Lee HB, Lee JH, Shin KS, Ryu TH, Kwon HR et al (2014) Endophytic fungi from Lycium chinense Mill and characterization of two new Korean records of Colletotrichum. Int J Mol Sci 15(9):15272–15286CrossRefGoogle Scholar
  26. 26.
    Zaiyou J, Li M, Guifang X, Xiuren Z (2013) Isolation of an endophytic fungus producing baccatin III from Taxus wallichiana var. mairei. J Ind Microbiol Biotechnol 40(11):1297–1302CrossRefGoogle Scholar
  27. 27.
    Shweta S, Gurumurthy BR, Ravikanth G, Ramanan US, Shivanna MB (2013) Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecine. Phytomedicine 20(3):337–342CrossRefGoogle Scholar
  28. 28.
    Feng C, Ma Y (2010) Isolation and anti-phytopathogenic activity of secondary metabolites from Alternaria sp. FL25, an endophytic fungus in Ficus carica. Chin J Appl Environ Biol 16:76–78CrossRefGoogle Scholar
  29. 29.
    Gond SK, Verma VC, Kumar A, Kumar V, Kharwar RN (2007) Study of endophytic fungal community from different parts of Aegle marmelos Correae (Rutaceae) from Varanasi (India). World J Microbiol Biotechnol 23(10):1371–1375CrossRefGoogle Scholar
  30. 30.
    Meddah N, Touhami AO, Douira A (2007) Hibiscus rosa-sinensis, a new host of Cochliobolus spicifer and Setosphaeria rostrata. Phytoprotection 88(2):57–60CrossRefGoogle Scholar
  31. 31.
    Abdel-hafez SI, Abo-Elyousr KA, Abdel-Rahim IR (2015) Leaf surface and endophytic fungi associated with onion leaves and their antagonistic activity against Alternaria porri. Czech Mycol 67:1CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2017

Authors and Affiliations

  1. 1.TERI UniversityNew DelhiIndia
  2. 2.Plant Biotechnology, Environmental and Industrial Biotechnology DivisionThe Energy and Resources Institute (TERI)New DelhiIndia

Personalised recommendations