Advertisement

Production and Characterization of an Antifungal Compound from Pseudomonas protegens Strain W45

  • Apekcha Bajpai
  • Bijender Singh
  • Swati Joshi
  • Bhavdish Narain Johri
Research Article
  • 151 Downloads

Abstract

Pseudomonas protegens strain W45 recovered from rhizosphere of wheat possesses potential to produce an antifungal compound in the culture medium. Therefore, to enhance its production, statistical optimization of medium was employed. Peptone, glycerol and incubation period were identified as significant variables affecting its production. These variables were further optimized by response surface methodology that resulted in 38% enhancement in inhibition zone with optimal values of 2.5%, 1.49% and 48 h for peptone, glycerol and incubation period, respectively. PCR amplification by gene specific primers for phloroglucinol, pyrrolnitrin and pyoluteorin resulted in amplicon of 745, 719 and 773 bp respectively, confirming the presence of all three genes. Antifungal compound was purified by thin layer chromatography. Gas chromatography mass spectrometry analysis of the methanolic extract reveals the presence of pyrrole type antifungal molecule 3-(2-methylpropyl)-hexahydropyrrolo [1,2-a]pyrazine-1,4-dione (C11H18N2O2). The compound significantly inhibited the growth of Sclerotinia sclerotiorum.

Keywords

Pseudomonas protegens Optimization Antifungal compound Rhizobacteria Sclerotinia sclerotiorum 

Abbreviations

OVAT

One-variable-at-a-time-approach

RSM

Response surface methodology

GC–MS

Gas chromatography–mass spectrometry

2,4-DAPG

2,4-Diacetylphloroglucinol

Notes

Acknowledgements

This work is financially supported by the grants of National Academy of Sciences India, Allahabad to Prof. B.N. Johri (NASI Senior Scientist) at Department of Biotechnology, Barkatullah University, Bhopal, Madhya Pradesh, India. Help received by Prof. T. Satyanarayana (UDSC), New Delhi, India is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no financial/commercial conflict of interest.

References

  1. 1.
    Thomashow LS, Weller DM (1995) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G, Keen NT (eds) Plant–microbe interactions. Chapman & Hall, New York, pp 187–235Google Scholar
  2. 2.
    Bossis E, Lemanceau P, Latour X, Garden L (2000) The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: current status and need for revision. Agronomie 20:51–63CrossRefGoogle Scholar
  3. 3.
    Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 85:1693–1703Google Scholar
  4. 4.
    Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents.  A Van Leeuw J Microb 81(1–4):10Google Scholar
  5. 5.
    Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer JM, Défago G et al (2011) Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 34(3):180–188CrossRefPubMedGoogle Scholar
  6. 6.
    Shanahan PO, Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358PubMedPubMedCentralGoogle Scholar
  7. 7.
    Duffy BK, Defago G (1999) Environmental factors modulating antifungal and siderophore biosynthesis by P. fluorescences biocontol strain. Appl Environ Microbiol 65:2429–2438PubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang Y, Fang X, An F, Wang G, Zhang X (2011) Improvement of antifungal activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Microbial Cell Factories 10:98CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    He L, Xu YQ, Zhang XH (2008) Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp M18G. Biotechnol Bioeng 100:250–259CrossRefPubMedGoogle Scholar
  10. 10.
    Guo Z, Shen L, Ji Z, Wu W (2012) Enhanced production of a novel cyclic hexapeptide antibiotic (NW-G01) by Streptomyces alboflavus 313 using response surface methodology. Int J Mol Sci 13:5230–5241CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yang F, Long L, Sun X, Wu H, Li T et al (2014) Optimization of medium using response surface methodology for lipid production by Scenedesmus sp. Mar Drugs 12:1245–1257CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mavrodi OV, Spadden M, Gardener BB, Mavrodi DV, Bonsall RF et al (2001) Genetic diversity of phlD from 2,4-diacetylphloroglucinol- producing fluorescent Pseudomonas spp. Phytopathology 91:35–43CrossRefPubMedGoogle Scholar
  13. 13.
    McSpadden Gardener BB, Mavrodi DV, Thomashow LS, Weller DM (2001) A rapid polymerase chain reaction-based assay characterizing rhizosphere populations of 2,4-diacetylphloroglucinol producing bacteria. Phytopathology 91:44–54CrossRefPubMedGoogle Scholar
  14. 14.
    de Souza JT, Raaijmakers JM (2003) Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin producing Pseudomonas and Burkholderia spp. FEMS Microbiol Ecol 43:21–34CrossRefPubMedGoogle Scholar
  15. 15.
    Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS III (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of Fluorescent Pseudomonas in soil habitats. Appl Environ Microbiol 8:2616–2624Google Scholar
  16. 16.
    Kumar A, Saini S, Wray V, Nimtz M, Prakash A et al (2012) Characterization of an antifungal compound produced by Bacillus sp. strain A(5)F that inhibits Sclerotinia sclerotiorum. J Basic Microbiol 52:670–678CrossRefPubMedGoogle Scholar
  17. 17.
    Park JY, Oh SA, Anderson AJ, Neiswender J, Kim JC (2011) Production of the antifungal compound phenazine and pyrrolnitrin from Pseudomonas chlororaphis 06 is differentially regulated by glucose. Lett Appl Microbiol 52:532–537CrossRefPubMedGoogle Scholar
  18. 18.
    Zhou T, Chen D, Li C, Sun Q, Li L et al (2012) Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiol Res 167:388–394CrossRefPubMedGoogle Scholar
  19. 19.
    Dharni S, Alam M, Kalani K, Khaliq A, Samad A et al (2012) Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil. J Microbiol Biotechnol 22:674–683CrossRefPubMedGoogle Scholar
  20. 20.
    Perez C, Paul M, Bezique P (1990) An antifungal assay by the agar well diffusion method. Acta Biol Med Exp 15:113–115Google Scholar
  21. 21.
    Rosales AM, Thomashow L, Cook RJ, Mew TW (1995) Isolation and identification of antifungal metabolites produced by rice associated antagonistic Pseudomonas sp. Phytopathology 85:1029–1032CrossRefGoogle Scholar
  22. 22.
    Bazzicalupo M, Fani R (1994) The use of RAPD for generating specific DNA probes for micro-organisms. In: Clapp J (ed) Methods in molecular biology, vol 50. Humana Press, Inc, Totowa, pp 155–175Google Scholar
  23. 23.
    Schowten A, Berg GVD, Hermann VE, Steinberg C, Gautheron N et al (2004) Defense responses of Fusarium oxysporum to 2,4 diacylphloroglucinol, a broad spectrum antifungal produced by Pseudomonas fluorescens. Am Phytopathol Soc 17:1201–1211Google Scholar
  24. 24.
    Sharma MVRK, Saharan K, Kumar L, Gautam A, Kapoor A et al (2010) Process optimization for enhanced production of cell biomass and metabolites of fluorescent pseudomonad R81. World Acad Sci Eng Technol 41:997–1001Google Scholar
  25. 25.
    Wang Q, Nomura CT (2010) Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources. J Biosci Bioeng 110:653–659CrossRefPubMedGoogle Scholar
  26. 26.
    Li Y, Jiang H, Xu Y, Zhang X (2008) Optimization of nutrient components for enhanced phenazine1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method. Appl Microbiol Biotechnol 77:1207–1217CrossRefPubMedGoogle Scholar
  27. 27.
    Sonnleitner E, Abdou L, Haas D (2009) Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 106:21866–21871CrossRefPubMedGoogle Scholar
  28. 28.
    Haggag WM, Soud MAE (2012) Production and optimization of Pseudomonas fluorescens biomass and metabolites for biocontrol of strawberry grey mould. Am J Plant Sci 3:836–845CrossRefGoogle Scholar
  29. 29.
    Bisen PS (2014) Microbiology. In: Laboratory protocols in applied life sciences. CRC Press, pp 663–769Google Scholar
  30. 30.
    Singh SP, Bharali P, Konwar BK (2013) Optimization of nutrient requirements and culture conditions for the production of rhamnolipid from Pseudomonas aeruginosa (MTCC 7815) using Mesuaferrea seed oil. Indian J Microbiol 53:467–476CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sasirekha B, Shivakumar S, Sullia SB (2012) Statistical optimization for improved indole-3-acetic acid (IAA) production by Pseudomonas aeruginosa and demonstration of enhanced plant growth promotion. J Soil Sci Plant Nutr 12:863–873Google Scholar
  32. 32.
    Murugappan RM, Aravinth A, Rajaroobia R, Karthikeyan M, Alamelu MR (2012) Optimization of MM9 medium constituents for enhancement of siderophoregenesis in marine Pseudomonas putida using response surface methodology. Indian J Microbiol 52:433–441CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Peng Y, He Y, Wu Z, Lu J, Li C (2014) Screening and optimization of low-cost medium for Pseudomonas putida Rs-198 culture using RSM. Braz J Microbiol 45:1229–1237CrossRefPubMedGoogle Scholar
  34. 34.
    Joglekar AM, May AT (1987) Product excellence through design of experiments. Cereal Food World 32:857–868Google Scholar
  35. 35.
    Preetha R, Jayaprakash NS, Philip R, Singh ISB (2007) Optimization of carbon and nitrogen sources and growth factors for the production of an aquaculture probiotic (Pseudomonas MCCB 103) using response surface methodology. J Appl Microbiol 102:1043–1105PubMedGoogle Scholar
  36. 36.
    Agrawal T, Kotasthane AS, Kushwah R (2015) Genotypic and phenotypic diversity of polyhydroxybutyrate (PHB) producing Pseudomonas putida isolates of Chhattisgarh region and assessment of its phosphate solubilizing ability. 3 Biotech 5:45–60CrossRefPubMedGoogle Scholar
  37. 37.
    Fischbach MA, Walsh CT, Clardy J (2008) The evolution of gene collectives: how natural selection drives chemical innovation. Proc Natl Acad Sci USA 105:4601–4608CrossRefPubMedGoogle Scholar
  38. 38.
    Baehler E, Bottiglieri M, Pechy-Tarr M, Maurhofer M, Keel C (2005) Use of green fluorescent protein-based reporters to monitor balanced production of antifungal compounds in the biocontrol agent Pseudomonas fluorescens CHA0. J Appl Microbiol 99:24–38CrossRefPubMedGoogle Scholar
  39. 39.
    Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM et al (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 105:3100–3105CrossRefPubMedGoogle Scholar
  40. 40.
    Marvodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445CrossRefGoogle Scholar
  41. 41.
    Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26(11):1408–1446CrossRefPubMedGoogle Scholar
  42. 42.
    Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B et al (2000) Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182:1215–1225CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sultan MZ, Park K, Lee SY, Park JK, Varughese T, Moon SS (2008) Novel oxidized derivatives of antifungal pyrrolnitrin from the bacterium Burkholderia cepacia K87. J Antibiot 61(7):420–425CrossRefPubMedGoogle Scholar
  44. 44.
    van Péea KH, Ligon JM (2000) Biosynthesis of pyrrolnitrin and other phenylpyrrole derivatives by bacteria. Nat Prod Rep 17:157–164CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2017

Authors and Affiliations

  • Apekcha Bajpai
    • 1
  • Bijender Singh
    • 2
  • Swati Joshi
    • 3
  • Bhavdish Narain Johri
    • 1
  1. 1.Department of BiotechnologyBarkatullah UniversityBhopalIndia
  2. 2.Department of MicrobiologyMaharshi Dayanand UniversityRohtakIndia
  3. 3.Department of MicrobiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations