Incidence and Antimicrobial Resistance of Campylobacter and Salmonella from Houseflies (Musca Domestica) in Kitchens, Farms, Hospitals and Slaughter Houses

  • Davood Ommi
  • Behsan Hemmatinezhad
  • Taghi Taktaz Hafshejani
  • Faham Khamesipour
Research Article

Abstract

Carriage status of Campylobacter and Salmonella was investigated in houseflies in Shahrekord and Isfahan provinces of Iran. This was a longitudinal study conducted from June 2013 to May 2014. Flies were collected from household kitchens, animal farms, slaughter houses and hospitals and put in sample bottles filled with peptone water. Bacteria were isolated and DNA was extracted from bacterial isolates using a commercial kit. Confirmation of the organisms was carried out by polymerase chain reaction using primer sets for detection of these pathogens. Out of 600 houseflies 19.5 % (117/600) were positive for Campylobacter and 15.8 % (95/600) were positive for Salmonella organisms. The recovery frequencies of the two organisms in different locations were similar. Higher proportions of infected flies were obtained during summer whereas low proportions were obtained during winter of all the organisms (P < 0.05). The organisms had low to moderate resistance to different antimicrobial agents. It is concluded that houseflies do harbor antimicrobial resistant diarrheagenic pathogens including Campylobacter and Salmonella, more so during summer. The data support the importance of taking into account the houseflies in future plans aimed at stemming infections caused by these organisms.

Keywords

Salmonella Campylobacter Antimicrobial resistance Houseflies Polymerase chain reaction Season Iran 

Notes

Acknowledgments

The authors would like to acknowledge the valuable contribution of Dr. Simbarashe Katsande and Dr. Erick V. G. Komba.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest with respect to the research, authorship and/or publication of this article.

References

  1. 1.
    EFSA (European Food Safety Authority) (2012) The European Union summary report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks in 2010. EFSA J 2010:2597CrossRefGoogle Scholar
  2. 2.
    Wray C, Davies RH (2003) The epidemiology and ecology of Salmonella in meat-producing animals. In: Torrence ME, Isaacson RE (eds) Microbial food safety in animal agriculture. Iowa State Press, Iowa City, pp 75–82Google Scholar
  3. 3.
    Kaneene JB, Potter RC (2003) Epidemiology of Campylobacter spp. in animals. In: Torrence ME, Isaacson RE (eds) Microbial food safety in animal agriculture. Iowa State Press, Iowa City, pp 175–181CrossRefGoogle Scholar
  4. 4.
    West LS (1951) The housefly. Its natural history, medical importance, and control. Comstock Publishing Co. Inc., New YorkGoogle Scholar
  5. 5.
    Hemmatinezhad B, Ommi D, Taktaz Hafshejani T, Khamesipour F (2015) Molecular detection and antimicrobial resistance of Pseudomonas aeruginosa from houseflies (Musca domestica) in Iran. J Venom Anim Toxins 21:18. doi:10.1186/s40409-015-0021-z CrossRefGoogle Scholar
  6. 6.
    Ommi D, Hashemian SM, Tajbakhsh E, Khamesipour F (2015) Molecular detection and antimicrobial resistance of Aeromonas from houseflies (Musca domestica) in Iran. Rev MVZ Córdoba 20(Supl):4929–4936Google Scholar
  7. 7.
    Förster M, Klimpel S, Sievert K (2009) The house fly (Musca domestica) as a potential vector of metazoan parasites caught in a pig-pen in Germany. Vet Parasitol 160:163–167CrossRefPubMedGoogle Scholar
  8. 8.
    Blunt R, McOrist S, McKillen J, McNair I, Jiang T, Mellits K (2011) House fly vector for porcine circovirus 2b on commercial pig farms. Vet Microbiol 149:452–455CrossRefPubMedGoogle Scholar
  9. 9.
    Nielsen AA, Skovgard H, Stockmarr A, Handberg KJ, Jorgensen PH (2011) Persistence of low-pathogenic avian influenza H5N7 and H7N1 subtypes in house flies (Diptera: Muscidae). J Med Entomol 48:608–614CrossRefPubMedGoogle Scholar
  10. 10.
    Davari B, Khodavaisy S, Ala F (2012) Isolation of fungi from housefly (Musca domestica L.) at Slaughter House and Hospital in Sanandaj, Iran. J Prev Med Hyg 53:172–174PubMedGoogle Scholar
  11. 11.
    Holt PS, Geden CJ, Moore RW, Gast RK (2007) Isolation of Salmonella enterica serovar Enteritidis from houseflies (Musca domestica) found in rooms containing Salmonella serovar Enteritidis-challenged hens. Appl Environ Microbiol 73:6030–6035CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rosef O, Kapperud G (1983) House flies (Musca domestica) as possible vectors of Campylobacter fetus subsp. jejuni. Appl Environ Microbiol 45:381–383PubMedPubMedCentralGoogle Scholar
  13. 13.
    Nazni WA, Seleena B, Lee HL, Jeffery J, Rogayah TAR, Sofian MA (2005) Bacteria fauna from the house fly, Musca domestica (L.). Trop Biomed 22:225–231PubMedGoogle Scholar
  14. 14.
    Olsen AR, Hammack TS (2000) Isolation of Salmonella spp. from the housefly, Musca domestica L., and the dump fly, Hydrotaea aenescens (Wiedemann) (Diptera: Muscidae), at caged-laer house. J Food Prot 63:958–960CrossRefPubMedGoogle Scholar
  15. 15.
    Nichlols GL (2005) Fly transmission of Campylobacter. Emerg Infect Dis 11(3):361–364CrossRefGoogle Scholar
  16. 16.
    Wales AD, Carrique-Mas JJ, Rankin M, Bell B, Thind BB, Davies RH (2010) Review of the carriage of zoonotic bacteria by arthropods, with special reference to Salmonella in mites, flies and litter beetles. Zoonoses Public Health 57:299–314PubMedGoogle Scholar
  17. 17.
    Liu Y, Yang Y, Zhao F, Fan X, Zhong W, Qiao D, Cao Y (2013) Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China. Southeast Asian J Trop Med Public Health 44(6):988–996PubMedGoogle Scholar
  18. 18.
    Barreiro C, Albano H, Silva J, Teixeira P (2013) Role of flies as vectors of foodborne pathogens in rural areas. ISRN Microbiol. doi:10.1155/2013/718780 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  20. 20.
    Rahn K, De Grandis SA, Clarke RC, McEwen SA, Galán JE, Ginocchio C, Curtiss R, Gyles CL (1992) Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6:271–279CrossRefPubMedGoogle Scholar
  21. 21.
    Denis M, Refrégier-Petton J, Laisney M-J, Ermel G, Salvat G (2001) Campylobacter contamination in French chicken production from farm to consumers. Use of a PCR assay for detection and identification of Campylobacter jejuni and Camp. coli. J Appl Microbiol 91:255–267. doi:10.1046/j.1365-2672.2001.01380.x CrossRefPubMedGoogle Scholar
  22. 22.
    Standards NCfCL (2008) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard. In: A3 NdM, 2 edition. National Committee for Clinical Laboratory Standards, WayneGoogle Scholar
  23. 23.
    Gupta AK, Nayduch D, Verma P, Shah B, Ghate HV, Patole MS, Shouche YS (2012) Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.). FEMS Microbiol Ecol 79:581–593CrossRefPubMedGoogle Scholar
  24. 24.
    Graczyk TK, Knight R, Gilman RH, Cranfield MR (2001) The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect 3:231–235CrossRefPubMedGoogle Scholar
  25. 25.
    Zurek L, Gorham JR (2008) Insects as vectors of foodborne pathogens. In: Voeller JG, Hoboken NJ (eds) Wiley handbook of science and technology for homeland security. Wiley, New Jersey, pp 1–16Google Scholar
  26. 26.
    Hui YH (2006) Handbook of food science, technology and engineering, vol 3. CRC Press, Taylor & Francis Group, Boca Raton, FL, USAGoogle Scholar
  27. 27.
    Joyner C, Mills MK, Nayduch D (2013) Pseudomonas aeruginosa in Musca domestica L.: temporospatial examination of bacteria population dynamics and house fly antimicrobial responses. PLoS ONE 8:e79224CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Newell DG, Fernley C (2003) Sources of Campylobacter colonization in broiler chickens. Appl Environ Microbiol 69:4343–4351CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hald B, Skogvard H, Band DD, Pedersen K, Dybdahl Jesperse JB, Madsen M (2004) Flies and Campylobacter infection of broiler flocks. Emerg Infect Dis 10(8):1490–1492CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Choo LC, Saleha AA, Wai SS, Fauziah N (2011) Isolation of Campylobacter and Salmonella from houseflies (Musca domestica) in a university campus and a poultry farm in Selangor, Malaysia. Trop Biomed 28(1):16–20PubMedGoogle Scholar
  31. 31.
    Humphrey T, O’Brien S, Madsen M (2007) Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol 117:237–257CrossRefPubMedGoogle Scholar
  32. 32.
    Kok J, O’Sullivan MV, Gilbert GL (2011) Feedback to clinicians on preventable factors can reduce hospital onset Staphylococcus aureus bacteraemia rates. J Hosp Infect 79(2):108–114CrossRefPubMedGoogle Scholar
  33. 33.
    Shane SM, Montrose MS, Harrington KS (1985) Transmission of Campylobacter jejuni by the housefly (Musca domestica). Avian Dis 29(2):384–391CrossRefPubMedGoogle Scholar
  34. 34.
    Green C, Krause D, Wylie J (2006) Spatial analysis of Campylobacter infection in the Canadian province of Manitoba. Int J Health Geogr 5:2CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Naumova EN (2006) Mystery of seasonality: getting the rhythm of nature. J Public Health Policy 27:2–12CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fisman DN (2007) Seasonality of infectious diseases. Annu Rev Public Health 28:127–143CrossRefPubMedGoogle Scholar
  37. 37.
    Naumova EN, Jagai JS, Matyas B, DeMaria A, MacNeill IB, Griffiths JK (2007) Seasonality in six enterically transmitted diseases and ambient temperature. Epidemiol Infect 135:281–292CrossRefPubMedGoogle Scholar
  38. 38.
    Hudson JA, Nicol C, Wright J, Whyte R, Hasell SK (1999) Seasonal variation of Campylobacter types from human cases, veterinary cases, raw chicken, milk and water. J Appl Microbiol 87:115–124CrossRefPubMedGoogle Scholar
  39. 39.
    Nylen G, Dunstan F, Palmer SR, Andersson Y, Bager F, Cowden J, Feierl G, Galloway Y, Kapperud G, Megraud F, Molbak K, Petersen LR, Ruutu P (2002) The seasonal distribution of Campylobacter infection in nine European countries and New Zealand. Epidemiol Infect 128:383–390CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kovats RS, Edwards SJ, Hajat S, Armstrong BG, Ebi KL, Menne B (2004) The effect of temperature on food poisoning: a time-series analysis of salmonellosis in ten European countries. Epidemiol Infect 132:443–453CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Patrick ME, Christensen LE, Waino M, Ethelberg S, Madsen H, Wegener HC (2004) Effects of climate on incidence of Campylobacter spp. in humans and prevalence in broiler flocks in Denmark. Appl Environ Microbiol 70:7474–7480CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kovats RS, Edwards SJ, Charron D, Cowden J, D’Souza RM, Ebi KL, Gauci C, Gerner-Smidt P, Hajat S, Hales S, Hernández Pezzi G, Kriz B, Kutsar K, McKeown P, Mellou K, Menne B, O’Brien S, van Pelt W, Schmid H (2005) Climate variability and Campylobacter infection: an international study. Int J Biometeorol 49:207–214CrossRefPubMedGoogle Scholar
  43. 43.
    Meldrum RJ, Griffiths JK, Smith RM, Esnas MR (2005) The seasonality of human Campylobacter infection and Campylobacter isolates from fresh, retail chicken in Wales. Epidemiol Infect 133:49–52CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Keegan VA, Majowicz SE, Pearl DL, Marshall BJ, Sittler N, Knowles L, Wilson JB (2009) Epidemiology of enteric disease in C-EnterNet’s pilot site–Waterloo region, Ontario, 1990 to 2004. Can J Infect Dis Med Microbiol 20:79–87PubMedPubMedCentralGoogle Scholar
  45. 45.
    Dawkins HC, Bolton FJ, Hutchinson DN (1984) A study of the spread of Campylobacter jejuni in four large kitchens. J Hyg (Lond) 92:357–364CrossRefGoogle Scholar
  46. 46.
    de Jong A, Thomas V, Simjee S, Godinho K, Schiessl B, Klein U, Butty P, Vallé M, Marion H, Shryock TR (2012) Pan-European monitoring of susceptibility to human-use antimicrobial agents in enteric bacteria isolated from healthy food-producing animals. J Antimicrob Chemother 67:638–651CrossRefPubMedGoogle Scholar
  47. 47.
    Mansouri-najand L, Saleha AA, Wai SS (2012) Prevalence of multidrug resistance Campylobacter jejuni and Campylobacter coli in chickens slaughtered in selected markets, Malaysia. Trop Biomed 29(2):231–238PubMedGoogle Scholar
  48. 48.
    Ghosh R, Uppal B, Aggarwal P, Chakravarti A, Jha AK (2013) Increasing antimicrobial resistance of Campylobacter jejuni isolated from paediatric diarrhea cases in a tertiary care hospital of New Delhi, India. J Clin Diagn Res 7(2):247–249PubMedPubMedCentralGoogle Scholar
  49. 49.
    Capoor MR, Nair D, Hasan AS, Aggarwal P, Gupta B (2006) Typhoid fever: narrowing therapeutic options in India. Southeast Asian J Trop Med Public Health 37:1170–1174PubMedGoogle Scholar
  50. 50.
    Kanungo S, Dutta S, Sur D (2008) Epidemiology of typhoid and paratyphoid fever in India. J Infect Dev Ctries 2:454–460PubMedGoogle Scholar
  51. 51.
    Singhal L, Gupta PK, Kale P, Gautam V, Ray P (2014) Trends in antimicrobial susceptibility of Salmonella Typhi from North India (2001–2012). Indian J Med Microbiol 32:149–152CrossRefPubMedGoogle Scholar
  52. 52.
    McDermott PF, Bodeis SM, Aarestrup FM, Brown S, Traczewski M, Fedorka-Cray P, Wallace M, Critchley IA, Thornsberry C, Graff S, Flamm R, Beyer J, Shortridge D, Piddock LJ, Ricci V, Johnson MM, Jones RN, Reller B, Mirrett S, Aldrobi J, Rennie R, Brosnikoff C, Turnbull L, Stein G, Schooley S, Hanson RA, Walker RD (2004) Development of a standardized susceptibility test for Campylobacter with quality-control ranges for ciprofloxacin, doxycycline, erythromycin, gentamicin, and meropenem. Microb Drug Resist 10:124–131CrossRefPubMedGoogle Scholar
  53. 53.
    Raveendran R, Wattal C, Sharma A, Oberoi JK, Prasad KJ, Datta S (2008) High level ciprofloxacin resistance in Salmonella enterica isolated from blood. Indian J Med Microbiol 26:50–53CrossRefPubMedGoogle Scholar
  54. 54.
    Albert MJ (2013) In vitro susceptibility of Campylobacter jejuni from Kuwaitto tigecycline and other antimicrobial agents. Indian J Med Res 137:187–190PubMedPubMedCentralGoogle Scholar
  55. 55.
    Armand-Lefèvre L, Leflon-Guibout V, Bredin J, Barguellil F, Amor A, Pagès JM, Nicolas-Chanoine MH (2003) Imipenem resistance in Salmonella enterica serovar Wien related to porin loss and CMY-4 beta-lactamase production. Antimicrob Agents Chemother 47(3):1165–1168CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Miriagou V, Tzouvelekis LS, Rossiter S, Tzelepi E, Angulo FJ, Whichard JM (2003) Imipenem resistance in a Salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob Agents Chemother 47(4):1297–1300CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Mosca A, Del Gaudio T, Miragliotta G (2010) Imipenem-resistant Campylobacter fetus bloodstream infection. J Chemother 2(2):142CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2016

Authors and Affiliations

  • Davood Ommi
    • 1
  • Behsan Hemmatinezhad
    • 2
  • Taghi Taktaz Hafshejani
    • 3
  • Faham Khamesipour
    • 2
    • 4
  1. 1.Functional Neurosurgery Research CenterShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Young Researchers and Elite Club, Shahrekord BranchIslamic Azad UniversityShahrekordIran
  3. 3.Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord BranchIslamic Azad UniversityShahrekordIran
  4. 4.Cellular and Molecular Research CenterSabzevar University of Medical SciencesSabzevarIran

Personalised recommendations