Advertisement

On Generalized Difference Ideal Convergence in Generalized Probabilistic n-normed Spaces

  • Binod Chandra TripathyEmail author
  • Mausumi Sen
  • Soumitra Nath
Research Article
  • 28 Downloads

Abstract

In this article, we introduce the concept of \(\varDelta ^{m}-I\)-convergent and \(\varDelta ^{m}-I\) Cauchy sequences in generalized probabilistic n-normed spaces and establish some results relating to this concept. We also study \(\varDelta ^{m}-I^{*}\) convergence in the same space. Statement Probabilistic norm generalizes and unifies different notions of norm, represented by a distance function, rather than a positive real number. Ideal convergence unifies many notions of convergence of sequences. In this article, we have introduced the notion of generalized difference ideal convergent sequences in probabilistic n-normed space, which generalizes and unifies many existing notions. Hence, the results of this article have been established in general setting.

Keywords

Statistical metric Difference sequence space Ideal convergence Probabilistic norm 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Menger K (1942) Statistical metrices. Proc Nat Acad Sci USA 28:535–537CrossRefADSGoogle Scholar
  2. 2.
    \(\check{S}\)erstnev AN (1962) Random normed spaces. Problems Completeness. Kazan Gos U\(\check{c}\)en Zap 122:3–20Google Scholar
  3. 3.
    Alsina C, Schweizer B, Sklar A (1993) On the definition of a probabilistic normed space. Aequ Math 46:91–98MathSciNetCrossRefGoogle Scholar
  4. 4.
    Karakus S (2007) Statistical convergence on probabilistic normed spaces. Math Commun 12:11–23MathSciNetzbMATHGoogle Scholar
  5. 5.
    Schweizer B, Sklar A (1960) Statistical metric spaces. Pac J Math 10:313–334MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gähler S (1969) Untersuchungen uber verallgemenerte \(m\)-metrische Raume I, II, III. Math Nachr 40:165–189CrossRefGoogle Scholar
  7. 7.
    Gähler S (1964) Lineare 2-normietre Raume. Math Nachr 28:1–43MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gunawan H, Mashadi M (2001) On \(n\)-normed spaces. Int J Math Sci 27:631–639MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jebril IH (2009) Complete random \(n\)-normed linear space. World Appl Sci Jour 6(10):1366–1371MathSciNetGoogle Scholar
  10. 10.
    Rahmat MR, Noorani MSM (2007) Probabilistic \(n\)-normed spaces. Int J Stat Econ 1(S07):20–30MathSciNetGoogle Scholar
  11. 11.
    Golet I (2011) On generalised probabilistic normed spaces. Int Math Forum 6(42):2073–2078MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kostyrko P, Šalát T, Wilczyński W (2000-2001) \(I\)-convergence. Real Anal Exch 26:669–686Google Scholar
  13. 13.
    Tripathy BC, Hazarika B (2008) \(I\)-convergent sequence spaces associated with multiplier sequence spaces. Math Inequal Appl 11(3):543–548MathSciNetzbMATHGoogle Scholar
  14. 14.
    Tripathy BC, Hazarika B (2009) Paranormed \(I\)-convergent sequence spaces. Math Slovaca 59(4):485–494MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tripathy BC, Hazarika B (2011) \(I\)-convergent sequences spaces defined by Orlicz function. Acta Math Appl Sin (Eng Ser) 27(1):149–154MathSciNetCrossRefGoogle Scholar
  16. 16.
    Tripathy BC, Hazarika B (2011) \(I\)-monotonic and \(I\)-convergent sequences. Kyungpook Math J 51(2):233–239MathSciNetCrossRefGoogle Scholar
  17. 17.
    Tripathy BC, Hazarika B, Choudhary B (2012) Lacunary \(I\)-convergent sequences. Kyungpook Math J 52(4):473–482MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tripathy BC, Dutta AJ (2012) On \(I\)-acceleration convergence of sequences of fuzzy real numbers. Math Model. Anal 17(4):549–557MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tripathy BC, Mahanta S (2010) On \(I\)-acceleration convergence of sequences. J Frank Inst 347:591–598MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sahiner A, Gürdal M, Saltan S, Gunewan H (2007) Ideal convergence in 2-normed spaces. Taiwan J Math II(5):1477–1484MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kizmaz H (1981) On certain sequence spaces. Can Math Bull 24:169–176MathSciNetCrossRefGoogle Scholar
  22. 22.
    Et M, Colok R (1995) On generalized difference sequence spaces. Soochow J Math 21(4):377–386MathSciNetGoogle Scholar
  23. 23.
    Tripathy BC, Esi A (2006) A new type of difference sequence spaces. Int J Sci Technol 1:11–14Google Scholar
  24. 24.
    Gumus HG, Nuray F (2011) \(\varDelta ^{m}\)-ideal convergence. Selcuk J Appl Math 12:101–110MathSciNetzbMATHGoogle Scholar
  25. 25.
    Tripathy BC, Sen M, Nath S (2012) \(I\)-convergence in probabilistic \(n\)-normed space. Soft Comput 16:1021–1027CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  • Binod Chandra Tripathy
    • 1
    Email author
  • Mausumi Sen
    • 2
  • Soumitra Nath
    • 3
  1. 1.Department of MathematicsTripura UniversityAgartalaIndia
  2. 2.National Institute of Technology, SilcharSilcharIndia
  3. 3.Department of MathematicsSilchar PolytechnicSilcharIndia

Personalised recommendations