On Generalized Difference Ideal Convergence in Generalized Probabilistic n-normed Spaces
- 28 Downloads
Abstract
In this article, we introduce the concept of \(\varDelta ^{m}-I\)-convergent and \(\varDelta ^{m}-I\) Cauchy sequences in generalized probabilistic n-normed spaces and establish some results relating to this concept. We also study \(\varDelta ^{m}-I^{*}\) convergence in the same space. Statement Probabilistic norm generalizes and unifies different notions of norm, represented by a distance function, rather than a positive real number. Ideal convergence unifies many notions of convergence of sequences. In this article, we have introduced the notion of generalized difference ideal convergent sequences in probabilistic n-normed space, which generalizes and unifies many existing notions. Hence, the results of this article have been established in general setting.
Keywords
Statistical metric Difference sequence space Ideal convergence Probabilistic normNotes
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.Menger K (1942) Statistical metrices. Proc Nat Acad Sci USA 28:535–537CrossRefADSGoogle Scholar
- 2.\(\check{S}\)erstnev AN (1962) Random normed spaces. Problems Completeness. Kazan Gos U\(\check{c}\)en Zap 122:3–20Google Scholar
- 3.Alsina C, Schweizer B, Sklar A (1993) On the definition of a probabilistic normed space. Aequ Math 46:91–98MathSciNetCrossRefGoogle Scholar
- 4.Karakus S (2007) Statistical convergence on probabilistic normed spaces. Math Commun 12:11–23MathSciNetzbMATHGoogle Scholar
- 5.Schweizer B, Sklar A (1960) Statistical metric spaces. Pac J Math 10:313–334MathSciNetCrossRefGoogle Scholar
- 6.Gähler S (1969) Untersuchungen uber verallgemenerte \(m\)-metrische Raume I, II, III. Math Nachr 40:165–189CrossRefGoogle Scholar
- 7.Gähler S (1964) Lineare 2-normietre Raume. Math Nachr 28:1–43MathSciNetCrossRefGoogle Scholar
- 8.Gunawan H, Mashadi M (2001) On \(n\)-normed spaces. Int J Math Sci 27:631–639MathSciNetCrossRefGoogle Scholar
- 9.Jebril IH (2009) Complete random \(n\)-normed linear space. World Appl Sci Jour 6(10):1366–1371MathSciNetGoogle Scholar
- 10.Rahmat MR, Noorani MSM (2007) Probabilistic \(n\)-normed spaces. Int J Stat Econ 1(S07):20–30MathSciNetGoogle Scholar
- 11.Golet I (2011) On generalised probabilistic normed spaces. Int Math Forum 6(42):2073–2078MathSciNetzbMATHGoogle Scholar
- 12.Kostyrko P, Šalát T, Wilczyński W (2000-2001) \(I\)-convergence. Real Anal Exch 26:669–686Google Scholar
- 13.Tripathy BC, Hazarika B (2008) \(I\)-convergent sequence spaces associated with multiplier sequence spaces. Math Inequal Appl 11(3):543–548MathSciNetzbMATHGoogle Scholar
- 14.Tripathy BC, Hazarika B (2009) Paranormed \(I\)-convergent sequence spaces. Math Slovaca 59(4):485–494MathSciNetCrossRefGoogle Scholar
- 15.Tripathy BC, Hazarika B (2011) \(I\)-convergent sequences spaces defined by Orlicz function. Acta Math Appl Sin (Eng Ser) 27(1):149–154MathSciNetCrossRefGoogle Scholar
- 16.Tripathy BC, Hazarika B (2011) \(I\)-monotonic and \(I\)-convergent sequences. Kyungpook Math J 51(2):233–239MathSciNetCrossRefGoogle Scholar
- 17.Tripathy BC, Hazarika B, Choudhary B (2012) Lacunary \(I\)-convergent sequences. Kyungpook Math J 52(4):473–482MathSciNetCrossRefGoogle Scholar
- 18.Tripathy BC, Dutta AJ (2012) On \(I\)-acceleration convergence of sequences of fuzzy real numbers. Math Model. Anal 17(4):549–557MathSciNetCrossRefGoogle Scholar
- 19.Tripathy BC, Mahanta S (2010) On \(I\)-acceleration convergence of sequences. J Frank Inst 347:591–598MathSciNetCrossRefGoogle Scholar
- 20.Sahiner A, Gürdal M, Saltan S, Gunewan H (2007) Ideal convergence in 2-normed spaces. Taiwan J Math II(5):1477–1484MathSciNetCrossRefGoogle Scholar
- 21.Kizmaz H (1981) On certain sequence spaces. Can Math Bull 24:169–176MathSciNetCrossRefGoogle Scholar
- 22.Et M, Colok R (1995) On generalized difference sequence spaces. Soochow J Math 21(4):377–386MathSciNetGoogle Scholar
- 23.Tripathy BC, Esi A (2006) A new type of difference sequence spaces. Int J Sci Technol 1:11–14Google Scholar
- 24.Gumus HG, Nuray F (2011) \(\varDelta ^{m}\)-ideal convergence. Selcuk J Appl Math 12:101–110MathSciNetzbMATHGoogle Scholar
- 25.Tripathy BC, Sen M, Nath S (2012) \(I\)-convergence in probabilistic \(n\)-normed space. Soft Comput 16:1021–1027CrossRefGoogle Scholar