Advertisement

Assimilation of INSAT-3D Satellite Data in WRF Model

  • H. S. Lekhadiya
  • R. K. JanaEmail author
Research Article
  • 25 Downloads

Abstract

The three-dimensional variational data assimilation system of the Weather Research and Forecasting (WRF) model is used in this study to assimilate the INSAT-3D temperature and specific humidity profiles over west coast of India, Mumbai, during 0000 UTC of 11–12 July 2016. The analysis obtained after assimilation is compared with the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis. After ECMWF assimilation, the results of the rainfall predictions show improvement over the Indian region. Overall, the assimilation of INSAT-3D is compared with ECMWF analysis, which shows quite good improvement in temperature and humidity analysis. Positive improvements are noticed in 24-h WRF model-predicted rainfall on assimilation of INSAT-3D thermodynamic profiles over west coast of India, Mumbai.

Keywords

Assimilation INSAT-3D WRF model Forecast Temperature Humidity Rainfall 

Notes

Acknowledgements

The analysed global and forecast data provided by the NCAR are duly acknowledged with sincere thanks. Authors also like to thank MOSDAC at Space Application Centre, Ahmedabad, for the satellite (INSAT-3D) data. Both the authors are grateful to SVNIT for financial support for this research work.

References

  1. 1.
    Kaur I, Kumar P, Deb SK, Kishtawal CM, Pal PK (2014) Impact of Kalpana-1 retrieved atmospheric motion vectors on mesoscale model forecast during summer monsoon 2011. Theor Appl Climatol 120(3):587–599ADSGoogle Scholar
  2. 2.
    Singh R, Ojha SP, Kishtawal C, Pal PK, Kumar AK (2016) Impact of the assimilation of INSAT-3D radiances on short-range weather forecasts. Q J R Meteorol Soc 142(694):120–131ADSCrossRefGoogle Scholar
  3. 3.
    Ojha SP, Singh R, Shukla MV (2016) Algorithm for generating cloud-mask from multi-channel satellite data. Q J R Meteorol Soc 142(696):1351–1358ADSCrossRefGoogle Scholar
  4. 4.
    Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF version 2. Technical report DTIC documentGoogle Scholar
  5. 5.
    Rakesh V, Goswami P (2011) Impact of background error statistics on forecasting of tropical cyclones over the north Indian Ocean. J Geophys Res Atmos 116(D20130):1–21Google Scholar
  6. 6.
    Singh R, Kishtawal C, Pal PK, Joshi P (2011) Assimilation of the multisatellite data into the WRF model for track and intensity simulation of the Indian Ocean tropical cyclones. Meteorol Atmos Phys 111(3–4):103–119ADSCrossRefGoogle Scholar
  7. 7.
    Lin YL, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meterol 22:1065–1092ADSCrossRefGoogle Scholar
  8. 8.
    Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124(10):2322–2339ADSCrossRefGoogle Scholar
  9. 9.
    Lekhadiya HS, Jana RK (2018) Analysis of extreme rainfall event with different microphysics and parameterization schemes in WRF model. Positioning 9(1):1–11CrossRefGoogle Scholar
  10. 10.
    Kumar P, Kishtawal CM, Pal PK (2014) Impact of satellite rainfall assimilation on weather research and forecasting model predictions over the Indian region. J Geophys Res Atmos 119(5):2017–2031ADSCrossRefGoogle Scholar
  11. 11.
    Barker DM, Huang W, Guo YR, Bourgeois A, Xiao Q (2004) A three-dimensional variational data assimilation system for MM5: implementation and initial results. Mon Weather Rev 132(4):897–914ADSCrossRefGoogle Scholar
  12. 12.
    Barker DM, Huang W, Guo YR, Bourgeois A (2003) A three-dimensional variational (3DVAR) data assimilation system for use with MM5. NCAR Tech Note.  https://doi.org/10.5065/D6CF9N1J
  13. 13.
    Ingleby NB (2001) The statistical structure of forecast errors and its representation in the Met. Office global 3-D variational data assimilation scheme. Q J R Meteorol Soc 127(571):209–231ADSCrossRefGoogle Scholar
  14. 14.
    Hollingsworth A, Lönnberg P (1986) The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: the wind field. Tellus A 38(2):111–136ADSCrossRefGoogle Scholar
  15. 15.
    Desroziers G, Ivanov S (2001) Diagnosis and adaptive tuning of observation-error parameters in a variational assimilation. Q J R Meteorol Soc 127(574):1433–1452ADSCrossRefGoogle Scholar
  16. 16.
    Parrish DF, Derber JC (1992) The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon Weather Rev 120(8):1747–1763ADSCrossRefGoogle Scholar
  17. 17.
    Kumar P, Singh R, Joshi P, Pal PK (2011) Impact of additional surface observation network on short range weather forecast during summer monsoon 2008 over Indian subcontinent. J Earth Syst Sci 120(1):53–64ADSCrossRefGoogle Scholar
  18. 18.
    Kumar P, Singh R, Joshi P, Pal PK (2013) Impact of Oceansat-2 scatterometer winds and TMI observations on Phet cyclone simulation. IEEE Trans Geosci Remote Sens 51(6):3774–3779ADSCrossRefGoogle Scholar
  19. 19.
    Global forecast system. https://nomads.ncdc.noaa.gov/data/gfsanl/. Accessed 21 Nov 2016
  20. 20.
    European Centre for medium-range weather forecasts: surface. https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/. Accessed 25 Nov 2016
  21. 21.
    European Centre for medium-range weather forecasts: pressure levels. https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/. Accessed 25 Nov 2016
  22. 22.
    Berrisford P, Dee D, Poli P, Brugge R, Fielding K, Fuentes M, Kallberg P, Kobayashi S, Uppala S, Simmons A (2011) The ERA-interim archive, version 2.0. ECMWFGoogle Scholar
  23. 23.
    Global satellite mapping of precipitation. ftp://hokusai.eorc.jaxa.jp/standard/. Accessed 28 Nov 2016

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  1. 1.Applied Mathematics and Humanities DepartmentSardar Vallabhbhai National Institute of TechnologySuratIndia

Personalised recommendations