Advertisement

Generation of OTRA-Based Inverse All Pass and Inverse Band Reject Filters

  • Amiyajeet Pradhan
  • Ravindra Kumar SharmaEmail author
Research Article
  • 20 Downloads

Abstract

By utilizing two new operational transresistance amplifier (OTRA)-based generic configurations, we have discussed ten second-order inverse band reject filter circuits and 12 inverse all pass filter circuits. The usability of the inverse filter configurations has been established by SPICE simulations and also by hardware experimentation. In these experiments, integrated circuit from analogue devices, namely AD844-type current feedback operational amplifier, has been used to realize the behaviour of OTRA.

Keywords

Active inverse filters Signal processing Operational transresistance amplifier 

Notes

Acknowledgement

Authors thank Agmatel India Private Limited, Nirman Vihar, Delhi-92, for facilitating use of their DSO-X 3034T for frequency response plot.

References

  1. 1.
    Rathore TS (1977) Inverse active networks. Electron Lett 13(10):303–304Google Scholar
  2. 2.
    Rathore TS, Singhi BM (1980) Network transformations. IEEE Trans Circuits Syst 27(1):57–59Google Scholar
  3. 3.
    Stevenson JK (1984) Two-way circuits with inverse transmission properties. Electron Lett 20(23):965–967ADSGoogle Scholar
  4. 4.
    Tugnait JK (1997) Identification and deconvolution of multichannel linear non-Gaussian processes using higher order statistics and inverse filter criteria. IEEE Trans Signal Process 45(3):658–672ADSMathSciNetGoogle Scholar
  5. 5.
    Armstrong E, Richmond R (2006) The application of inverse filters to 3D microscanning of LADAR imagery. In: IEEE aerospace conference, pp 6-pp.  https://doi.org/10.1109/aero.2006.1655907
  6. 6.
    Kubota A, Aizawa K (2000) Inverse filters for reconstruction of arbitrarily focused images from two differently focused images. In: ICIP, pp 101–104.  https://doi.org/10.1109/icip.2000.900902
  7. 7.
    Watanabe A (2001) Formant estimation method using inverse-filter control. IEEE Trans Speech Audio Process 9(4):317–326Google Scholar
  8. 8.
    Zhang Z, Wang D, Wang W, Du H, Zu J (2008) A group of inverse filters based on stabilized solutions of fredholm integral equations of the first kind. In: Proceedings of IEEE instrumentation and measurement technology conference, pp 668–671.  https://doi.org/10.1109/imtc.2008.4547120
  9. 9.
    Nelson PA, Hamada H, Elliott SJ (1992) Inverse filters for multi-channel sound reproduction. IEICE Trans Fundam Electron Commun Comput Sci 75(11):1468–1473Google Scholar
  10. 10.
    Kirkeby O, Nelson PA (1999) Digital filter design for inversion problems in sound reproduction. J Audio Eng Soc 47(7/8):583–595Google Scholar
  11. 11.
    Shinriki M, Hamada K (2008) Multi-range-resolution radar using inverse filters. IET Radar Sonar Navig 2(6):410–418Google Scholar
  12. 12.
    Proakis GJ, Manolakis GD (2007) Digital signal processing. Prentice Hall, Upper Saddle RiverGoogle Scholar
  13. 13.
    Leuciuc A (1997) Using nullors for realisation of inverse transfer functions and characteristics. Electron Lett 33(11):949–951Google Scholar
  14. 14.
    Chipipop B, Surakampontorn W (1999) Realisation of current-mode FTFN-based inverse filter. Electron Lett 35(9):690–692Google Scholar
  15. 15.
    Wang HY, Lee CT (1999) Using nullors for realisation of current-mode FTFN-based inverse filters. Electron Lett 35(22):1889–1890Google Scholar
  16. 16.
    Abuelma’atti MT (2000) Identification of cascadable current-mode filters and inverse-filters using single FTFN. Frequenz 54(11–12):284–289Google Scholar
  17. 17.
    Gupta SS, Bhaskar DR, Senani R, Singh AK (2009) Inverse active filters employing CFOAs. Electr Eng 91(1):23Google Scholar
  18. 18.
    Gupta SS, Bhaskar DR, Senani R (2011) New analogue inverse filters realised with current feedback op-amps. Int J Electron 98(8):1103–1113Google Scholar
  19. 19.
    Patil VN, Sharma RK (2015) Novel inverse active filters employing CFOAs. Int J Sci Res Dev 3(7):359–360Google Scholar
  20. 20.
    Shah NA, Quadri M, Iqba SZ (2008) High output impedance current-mode allpass inverse filter using CDTA. Indian J Pure Appl Phys 46(12):893–896Google Scholar
  21. 21.
    Shah NA, Rather MF (2006) Realization of voltage-mode CCII-based all pass filter and its inversion version. Indian J Pure Appl Phys 44(3):269–271Google Scholar
  22. 22.
    Pandey R, Pandey N, Negi T, Garg V (2013) CDBA based universal inverse filter. ISRN Electron.  https://doi.org/10.1155/2013/181869 Google Scholar
  23. 23.
    Singh AK, Gupta A, Senani R (2018) OTRA-based multi-function inverse filter configuration. Adv Electr Electron Eng 15(5):846–856Google Scholar
  24. 24.
    Chen JJ, Tsao HW, Chen CC (1992) Operational transresistance amplifier using CMOS technology. Electron Lett 28(22):2087–2088Google Scholar
  25. 25.
    Salama KN, Soliman AM (1999) CMOS operational transresistance amplifier for analog signal processing. Microelectron J 30(3):235–245Google Scholar
  26. 26.
    Riewruja V, Parnklang J, Julprapa A (2001) Current tunable CMOS operational transresistance amplifier. Proc IEEE Int Symp Ind Electron (ISIE) 2:1328–1338Google Scholar
  27. 27.
    Duruk A, Kuntman H (2005) A new CMOS differential OTRA design for the low voltage power supplies in the sub-micron technologies. Turk J Electr Eng Comput Sci 13(1):23–38Google Scholar
  28. 28.
    Mostafa H, Soliman AM (2006) A modified CMOS realization of the operational transresistance amplifier (OTRA). Frequenz 60(3–4):70–77ADSGoogle Scholar
  29. 29.
    Kafrawy AK, Soliman AM (2009) A modified CMOS differential operational transresistance amplifier (OTRA). AEU Int J Electron Commun 63(12):1067–1071Google Scholar
  30. 30.
    Duruk A, Güneş EO, Kuntman H (2007) A new low voltage CMOS differential OTRA for sub-micron technologies. AEU Int J Electron Commun 61(5):291–299Google Scholar
  31. 31.
    Hou CL, Chien HC, Lo YK (2005) Squarewave generators employing OTRAs. IEE Proc Circuits Devices Syst 152(6):718–722Google Scholar
  32. 32.
    Salama KN, Soliman AM (1999) Universal filter using single operational transresistance amplifier. AEU Archiv Elektronik Ubertragungstechnik 53(1):49–52Google Scholar
  33. 33.
    Salama KN, Soliman AM (2000) Active RC applications of the operational transresistance amplifier. Frequenz 54(7–8):171–176ADSGoogle Scholar
  34. 34.
    Kılınç S, Keskin AÜ, Çam U (2007) Cascadable voltage-mode multifunction biquad employing single OTRA. Frequenz 61(3–4):84–86ADSGoogle Scholar
  35. 35.
    Chang CM, Lin YT, Hsu CK, Hou CL, Horng JW (2011) Generation of voltage-mode OTRA-based multifunction biquad filter. In: Proceedings of the 10th WSEAS international conference on instrumentation, measurement, circuits and systems, pp 21–27. ISBN: 978-960-474-282-0Google Scholar
  36. 36.
    Salama KN, Soliman AM (2000) Novel oscillators using the operational transresistance amplifier. Microelectron J 31(1):39–47Google Scholar
  37. 37.
    Çam U (2002) A novel single-resistance-controlled sinusoidal oscillator employing single operational transresistance amplifier. Analog Integr Circuits Signal Process 32(2):183–186Google Scholar
  38. 38.
    Pandey R, Pandey N, Kumar R, Solanki G (2010) A novel OTRA based oscillator with non-interactive control. In: International conference on computer and communication technology (ICCCT), pp 658–660.  https://doi.org/10.1109/iccct.2010.5640448
  39. 39.
    Gupta A, Senani R, Bhaskar DR, Singh AK (2012) OTRA-based grounded-FDNR and grounded-inductance simulators and their applications. Circuits Syst Signal Process 31(2):489–499MathSciNetGoogle Scholar
  40. 40.
    Kacar F, Cam U, Cicekoglu O, Kuntman H, Kuntman A (2002) New parallel immitance simulator realizations employing a single OTRA. In: Proceedings of the 45th Midwest symposium on circuits and systems (Vol. 1) pp I–303Google Scholar
  41. 41.
    Cam U, Kacar F, Cicekoglu O, Kuntman H, Kuntman A (2003) Novel grounded parallel immittance simulator topologies employing single OTRA. Int J Electron Commun 57(4):287–290Google Scholar
  42. 42.
    Kilinc S, Salama KN, Cam U (2006) Realization of fully controllable negative inductance with single operational transresistance amplifier. Circuits Syst Signal Process 25(1):47–57zbMATHGoogle Scholar
  43. 43.
    Nagar BC, Paul SK (2017) Lossless grounded FDNR simulator and its applications using OTRA. Analog Integr Circuits Signal Process 92(3):507–517Google Scholar
  44. 44.
    Lo YK, Chien HC (2006) Current-mode monostable multivibrators using OTRAs. IEEE Trans Circuits Syst II Express Briefs 53(11):1274–1278Google Scholar
  45. 45.
    Lo YK, Chien HC, Chiu HJ (2008) Switch-controllable OTRA-based bistable multivibrators. IET Circuits Devices Syst 2(4):373–382Google Scholar
  46. 46.
    Pandey R, Chitranshi S, Pandey N, Shekhar C (2012) Single OTRA-based PD-controllers. Int J Eng Sci Technol 6(4):1426–1437Google Scholar
  47. 47.
    Singh AK, Senani R, Gupta A (2018) OTRA, its implementations and applications: a state-of-the-art review. Analog Integr Circuits Signal Process.  https://doi.org/10.1007/s10470-018-1311-5 Google Scholar
  48. 48.
    Sánchez-López C, Martínez-Romero E, Tlelo-Cuautle E (2011) Symbolic analysis of OTRAs-based circuits. J Appl Res Technol 9(1):69–80Google Scholar

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  1. 1.Electronics and Communication Engineering DepartmentAmbedkar Institute of Advanced Communication Technologies and Research (GGSIP University)New DelhiIndia

Personalised recommendations