Advertisement

Electronic Structure Explanation for the Structure and Reactivity of di-n-Butyltin(IV) Derivative of Glycylphenylalanine

  • Sandeep PokhariaEmail author
  • Rachana Joshi
  • Mamta Pokharia
  • Swatantra Kumar Yadav
  • Hirdyesh Mishra
Research Article
  • 10 Downloads

Abstract

The density functional theory (DFT)-based quantum-chemical calculations have been performed on di-n-butyltin(IV) derivative of glycylphenylalanine (H2L) using the Gaussian 09 software package. The molecular geometry of n-Bu2SnL was optimized at B3LYP/6-31G(d,p)/LANL2DZ(Sn) level of theory without any symmetry constraint. The harmonic vibrational frequencies were computed at the same level of theory to find the true potential energy surface (PES) minima. The various geometrical and thermochemical parameters for the studied complex are obtained in the gas phase. The atomic charges at all the atoms were calculated using Mulliken Population Analysis, Hirshfeld Population Analysis and Natural Population Analysis. The charge distribution within the studied complex is explained on the basis of molecular electrostatic potential maps, the frontier molecular orbital analysis and conceptual-DFT-based reactivity (global as well as local) descriptors, using the finite difference approximation method. The nature of O–Sn, N–Sn, N → Sn and C–Sn bonds is discussed in terms of the conceptual-DFT-based reactivity descriptors. The structural analysis of the studied complex has been carried out in terms of the selected bond lengths and bond angles. The structural and atomic charge analysis suggests a distorted trigonal bipyramidal arrangement consisting of negatively charged centres around the positively charged central Sn atom.

Keywords

Conceptual-DFT di-n-Butyltin(IV) Glycylphenylalanine Organotin(IV) Reactivity descriptors 

Notes

Acknowledgements

The authors are thankful to Banaras Hindu University, Varanasi, India, for providing basic infrastructural and computational facilities.

Supplementary material

40010_2018_582_MOESM1_ESM.docx (75 kb)
Supplementary material 1 (DOCX 75 kb)

References

  1. 1.
    Nath M (2008) Toxicity and the cardiovascular activity of organotin compounds: a review. Appl Organomet Chem 22:598–612CrossRefGoogle Scholar
  2. 2.
    Pellerito L, Nagy L (2002) Organotin(IV)n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coord Chem Rev 224:111–150CrossRefGoogle Scholar
  3. 3.
    Alama A, Tasso B, Novelli F, Sparatore F (2009) Organometallic compounds in oncology: implications of novel organotins as antitumor agents. Drug Discov Today 14:500–508CrossRefGoogle Scholar
  4. 4.
    Carraher CE, Roner MR (2014) Organotin polymers as anticancer and antiviral agents. J Organomet Chem 751:67–82CrossRefGoogle Scholar
  5. 5.
    Arjmand F, Parveen S, Tabassum S, Pettinari C (2014) Organo-tin antitumor compounds: their present status in drug development and future perspectives. Inorg Chim Acta 423:26–37CrossRefGoogle Scholar
  6. 6.
    Katsoulakou E, Tiliakos M, Papaefstathiou G, Terzis A, Raptopoulou C, Geromichalos G, Papazisis K, Papi R, Pantazaki A, Kyriakidis D, Cordopatis P, Manessi-Zoupa E (2008) Diorganotin(IV) complexes of dipeptides containing the & #x03B1;-aminoisobutyryl residue (Aib): preparation, structural characterization, antibacterial and antiproliferative activities of [(n-Bu)2Sn(H-1L)] (LH = H-Aib-L-Leu-OH, H-Aib-L-Ala-OH). J Inorg Biochem 102:1397–1405CrossRefGoogle Scholar
  7. 7.
    Nath M, Singh H, Kumar P, Kumar A, Song X, Eng G (2009) Organotin(IV) tryptophanylglycinates: potential non-steroidal anti-inflammatory agents; crystal structure of dibutyltin (IV) tryptophanylglycinate. Appl Organometal Chem 23:347–358CrossRefGoogle Scholar
  8. 8.
    Girasolo MA, Rubino S, Portanova P, Calvaruso G, Ruisi G, Stocco G (2010) New organotin(IV) complexes with l-arginine, Nα-t-Boc-l-arginine and l-alanyl-l-arginine: synthesis, structural investigations and cytotoxic activity. J Organomet Chem 695:609–618CrossRefGoogle Scholar
  9. 9.
    Girichev GV, Giricheva NI, Koifman OI, Minenkov YV, Pogonin AE, Semeikin AS, Shlykov SA (2012) Molecular structure and bonding in octamethylporphyrin tin(II), SnN4C28H28. Dalton Trans 41:7550–7558CrossRefGoogle Scholar
  10. 10.
    Thomas R, Nelson JP, Pardasani RT, Pardasani P, Mukherjee T (2013) Novel tin complexes containing an oximato ligand: synthesis, characterization, and computational investigation. Helv Chim Acta 96:1740–1749CrossRefGoogle Scholar
  11. 11.
    Latrous L, Tortajada J, Haldys V, Léon E, Correia C, Salpin JY (2013) Gas-phase interactions of organotin compounds with glycine. J Mass Spectrom 48:795–806ADSCrossRefGoogle Scholar
  12. 12.
    Matczak P (2015) Theoretical investigation of the N → Sn coordination in (Me3SnCN)2. Struct Chem 26:301–318CrossRefGoogle Scholar
  13. 13.
    Pokharia S (2015) Theoretical insights on organotin(IV)-protein interaction: density functional theory (DFT) studies on di-n-butyltin(IV) derivative of glycylvaline. Asian J Res Chem 8:7–12CrossRefGoogle Scholar
  14. 14.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian09, revision B.01. Gaussian, Inc., WallingfordGoogle Scholar
  15. 15.
    Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652ADSCrossRefGoogle Scholar
  16. 16.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789ADSCrossRefGoogle Scholar
  17. 17.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations-potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310ADSCrossRefGoogle Scholar
  18. 18.
    Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873CrossRefGoogle Scholar
  19. 19.
    Dennington RD II, Keith TA, Millam JM (2009) Gauss view. Gaussian Inc., WallingfordGoogle Scholar
  20. 20.
    Huber F, Haupt HJ, Preut H, Barbieri R, LoGuidice MT (1977) Preparation, crystal and molecular structure of diphenyltin glycylglycinate (C6H5)2SnC4H6N2O3. Z Anorg Allg Chem 432:51–57CrossRefGoogle Scholar
  21. 21.
    Mundus-Glowacki B, Huber F, Preut H, Ruisi G, Barbieri R (1992) Synthesis and spectroscopic characterization of dimethyl-, di-n-butyl, di-t-butyl- and diphenyl-tin(IV) derivatives of dipeptides: crystal and molecular structure of di-n-butyltin(IV)glycylvalinate. Appl Organomet Chem 6:83–94CrossRefGoogle Scholar
  22. 22.
    Nath M, Singh H, Eng G, Song X (2008) New di- and triorganotin(IV) derivatives of tyrosinylphenylalanine as models for metal-protein interactions: synthesis and structural characterization. Crystal structure of Me2Sn(Tyr-Phe).MeOH. J Organomet Chem 693:2541–2550CrossRefGoogle Scholar
  23. 23.
    Berger G (2013) Using conceptual density functional theory to rationalize regioselectivity: a case study on the nucleophilic ring-opening of activated aziridines. Comput Theor Chem 1010:11–18CrossRefGoogle Scholar
  24. 24.
    Politzer P, Laurence PR, Jayasuriya K (1985) Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Env Health Perspec 61:191–202CrossRefGoogle Scholar
  25. 25.
    Roy RK, Saha S (2010) Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. Annu Rep Prog Chem Sect C 106:118–162CrossRefGoogle Scholar
  26. 26.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  27. 27.
    Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci USA 82:6723–6726ADSCrossRefGoogle Scholar
  28. 28.
    Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091CrossRefGoogle Scholar
  29. 29.
    Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  30. 30.
    Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050CrossRefGoogle Scholar
  31. 31.
    Saha S, Bhattacharjee R, Roy RK (2013) Hardness potential derivatives and their relation to Fukui indices. J Comput Chem 34:662–672CrossRefGoogle Scholar
  32. 32.
    Roy RK, Krishnamurti S, Geerlings P, Pal S (1998) Local softness and hardness based reactivity descriptors for predicting intra- and intermolecular reactivity sequences: carbonyl compounds. J Phys Chem A 102:3746–3755CrossRefGoogle Scholar
  33. 33.
    Morell C, Grand A, Toro-Labbé A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–212CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  • Sandeep Pokharia
    • 1
    Email author
  • Rachana Joshi
    • 1
  • Mamta Pokharia
    • 1
  • Swatantra Kumar Yadav
    • 2
  • Hirdyesh Mishra
    • 2
  1. 1.Organometallics and Molecular Modelling Group, Chemistry Section, M.M.VBanaras Hindu UniversityVaranasiIndia
  2. 2.Physics Section, M.M.VBanaras Hindu UniversityVaranasiIndia

Personalised recommendations