Design and Construction of a Line-Confocal Raman Microscope for Sensitive Molecules

  • Barun Kumar Maity
  • Anirban Das
  • Sayan Dutta
  • Sudipta Maiti
Research Article


Surface enhanced Raman spectroscopy (SERS) has great potential for investigating the secondary structure of biomolecules. While enhancements of many orders of magnitude are possible in SERS, the excitation powers required for adequate signal to noise may still be damaging for sensitive protein molecules. Here, we describe the design and construction of a line-confocal Raman micro-spectrometer, which allows investigations at much lower powers compared to a commercial Raman microscope, which uses a point-confocal design. Our design combines a commercial Raman spectrometer and a fluorescence microscope, and achieves simultaneous spectrometry over 400 pixels. This can be used for multiplexed probing of a homogeneous sample, using much lower power for each pixel at comparable signal-to-noise ratios.


SERS Raman imaging Low power Raman Protein 


  1. 1.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at silver electrode. Chem Phys Lett 26:163–166ADSCrossRefGoogle Scholar
  2. 2.
    Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217CrossRefGoogle Scholar
  3. 3.
    Tian ZQ, Ren B, Wu DY (2002) Surface-enhanced raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 106:9463–9483CrossRefGoogle Scholar
  4. 4.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106CrossRefGoogle Scholar
  5. 5.
    Han XX, Zhao B, Ozaki Y (2009) Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem 394:1719–1727CrossRefGoogle Scholar
  6. 6.
    Cotton TM, Schultz SG, Van RPD (1980) Surface enhanced resonance Raman scattering from cytochrome C and myoglobin adsorbed on silver electrode. J Am Chem Soc 102:7960–7962CrossRefGoogle Scholar
  7. 7.
    Xu LJ, Zong C, Zheng XH, Hu P, Feng JM, Ren B (2014) Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal Chem 86:2238–2245CrossRefGoogle Scholar
  8. 8.
    Feliu N, Hassan M, Garcia RE, Cui D, Parak W, Alvarez-Puebla R (2017) SERS quantification and characterization of proteins and other biomolecules. Langmuir 33:9711–9730CrossRefGoogle Scholar
  9. 9.
    Cao YC, Jin R, Nam JM, Thaxton CS, Mirkin CA (2003) Raman dye-labeled nanoparticle probes for proteins. J Am Chem Soc 125:14676–14677CrossRefGoogle Scholar
  10. 10.
    Xu SP, Ji XH, Xu WQ, Li XL, Wang LY, Bai YB, Zhao B, Ozaki Y (2004) Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering. Analyst 129:63–68ADSCrossRefGoogle Scholar
  11. 11.
    Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 75:5936–5943CrossRefGoogle Scholar
  12. 12.
    Gong JL, Liang Y, Huang Y, Chen JW, Jiang JH, Shen GL, Yu RQ (2007) Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools. Biosens Bioelectron 22:1501–1507CrossRefGoogle Scholar
  13. 13.
    Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyka M, Baranska M (2013) Raman spectroscopy of proteins: a review. J Raman Spectrosc 44:1061–1076ADSCrossRefGoogle Scholar
  14. 14.
    Mantelingu K, Kishore H, Balasubramanyam K, Altaf M, Swamy SN, Selvi R, Das C, Narayana C, Rangappa KS, Kundu TK (2007) Activation of p300 histone acetyltransferase by small molecules altering enzyme structure: probed by surface-enhanced Raman spectroscopy. J Phys Chem B 111(17):4527–4534CrossRefGoogle Scholar
  15. 15.
    Kumar PGV, Selvi R, Kishore H, Kundu TK, Narayana C (2008) Surface-enhanced Raman spectroscopic studies of coactivator-associated arginine methyltransferase. J Phys Chem B 112:6703–6707CrossRefGoogle Scholar
  16. 16.
    Kumar PGV, Reddy A, Arif M, Kundu TK, Narayana N (2006) Surface-enhanced Raman scattering studies of human transcriptional coactivator p300. J Phys Chem B 110:16787–16792CrossRefGoogle Scholar
  17. 17.
    Han XX, Kitahama Y, Tanaka Y, Guo J, Xu WQ, Zhao B, Ozaki Y (2008) Simplified protocol for detection of protein-ligand interactions via surface-enhanced resonance Raman scattering and surface-enhanced fluorescence. Anal Chem 80:6567–6572CrossRefGoogle Scholar
  18. 18.
    Bhowmik D, Mote KR, MacLaughlin CM, Biswas N, Chandra B, Basu JK, Walker GC, Madhu PK, Maiti S (2015) Cell-membrane-mimicking lipid-coated nanoparticles confer Raman enhancement to membrane proteins and reveal membrane-attached amyloid-beta conformation. ACS Nano 9:9070–9077CrossRefGoogle Scholar
  19. 19.
    Bhowmik D, MacLaughlin CM, Chandrakesan M, Ramesh P, Venkatramani R, Walker GC, Maiti S (2014) pH changes the aggregation property of amyloid-β without altering the monomeric conformation. Phys Chem Chem Phys 16:885–889CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  • Barun Kumar Maity
    • 1
  • Anirban Das
    • 1
  • Sayan Dutta
    • 1
    • 2
  • Sudipta Maiti
    • 1
  1. 1.Department of Chemical SciencesTata Institute of Fundamental ResearchMumbaiIndia
  2. 2.College of PharmacyPurdue UniversityWest LafayetteUSA

Personalised recommendations