Advertisement

SARAL/AltiKa Mission: Applications Using Ka-band Altimetry

  • Raj Kumar
  • Rashmi Sharma
  • R. P. Singh
  • Praveen Gupta
  • Sandip R. Oza
Review Article
  • 117 Downloads

Abstract

Observations from AltiKa (nadir altimeter in Ka-band) on board the Satellite with ARGOS and AltiKa (SARAL) mission have been used for exploring new, unique and challenging areas. These application areas are coastal altimetry, inland hydrology and cryosphere (continental and sea ice). High rate (40-Hz) data from AltiKa has been exploited for retrieving very useful oceanic parameters (sea surface height anomaly, significant wave height and ocean surface wind) in the coastal waters (up to ~ 3 km off coast) of Indian landmass region. Validation carried out using buoys and tide gauge suggest exceedingly high correlation (~ 0.7–0.9) in the region of 3–10 km from the coast for each of these parameters. AltiKa is able to provide reasonably good quality ocean parameters much nearer to the coast (up to 3–10 km) as compared to Jason-2 (up to 8–10 km). Under the land hydrology, some of the extreme events such as flood wave (Brahmaputra river) and hydrological drought (Ukai reservoir) over India have been captured extremely well by AltiKa data. Brahmaputra river flood plain experiences flood waves almost every year. Flood wave of Brahmaputra river was captured using the AltiKa data on 9th June 2015. Two important aspects of cryospheric applications of AltiKa data has revealed interesting findings. During 2013–2015, East Antarctica is gaining ice with maximum change of 0.6 m in many regions. While in the west near Thwaites glacier and Pine Island glacier, more than 2 m reduction in the elevation has been observed. Winter sea ice freeboard thickness values were found to be higher than those estimated during summer period in both Arctic and Antarctic regions.

Keywords

SARAL/AltiKa 40-Hz data Coastal geophysical parameters Inland water level Ice sheet surface elevation 

Notes

Acknowledgements

Special thanks to Shri Tapan Misra, Director, Space Applications Centre (SAC) for his constant encouragement and motivation. Thanks are due to Dr. I. M. Bahuguna, Dr. D. R. Rajak, Ms. Maya Suryawnanshi, Mr. Aditya Chaudhary and Dr. S. Chander of SAC for the innovative research work, discussed here. Tide gauge and wave rider buoy data provided by INCOIS is acknowledged herewith. Authors are extremely grateful to Indian Space Research Organization, India and Centre National d’Etudes Spatials, France for the AltiKa mission, which provided the opportunity to work with unique data set that helped in exploring new science areas like, coastal, hydrology and cryospheric science.

References

  1. 1.
    SARAL/AltiKa products handbook, SALP-MU-M-OP-15984-CN,2,4, 9 Dec 2013Google Scholar
  2. 2.
    Verron J et al (2015) The SARAL/AltiKa altimetry satellite mission. Mar Geodesy 38:2–21.  https://doi.org/10.1080/01490419.2015.1008157 CrossRefGoogle Scholar
  3. 3.
    Mercier F, Rosmorduc V, Carrere L, Thibaut P (2010) Coastal and Hydrology Altimetry product (PISTACH) handbook. Centre National d’Études Spatiales (CNES), Paris, France, 4 Oct 42010Google Scholar
  4. 4.
    Gommenginger C, Thibaut P, Fenoglio-Marc L, Quartly GD, Deng X, Gomez-Enri J et al (2011) Retracking altimeter waveforms near the coasts. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 61–102CrossRefGoogle Scholar
  5. 5.
    Fekete BM, Vörösmarty CJ (2007) The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements: PUB Kick-off. In: Proceedings of the PUB Kickoff meeting held in Brasilia, 20–22 Nov 2002, IAHS Publ. 309, 2007Google Scholar
  6. 6.
    Frappart F, Calmant C, Cauhope M, Seyler F, Cazenave A (2005) Preliminary results of Envisat RA-2-derived water levels validation over the Amazon basin. Remote Sens Environ 100:252–264ADSCrossRefGoogle Scholar
  7. 7.
    Calmant S, Seyler F (2006) continental surface waters from satellite altimetry. C R Geosci 338:1113–1122CrossRefGoogle Scholar
  8. 8.
    Calmant S, Seyler F, Cretaux JF (2008) Monitoring continental surface waters by satellite altimetry. Surv Geophys 29:247–269ADSCrossRefGoogle Scholar
  9. 9.
    Gupta PK, Dubey AK, Dutta S, Singh RP, Chauhan P (2015) Monitoring major inland water bodies of India using SARAL-ALTIKA: some results. NNRMS Bull 39:91–96Google Scholar
  10. 10.
    Biancamaria S, Hossain F, Lettenmaier DP (2011) Forecasting transboundary river water elevations from space. Geophys Res Lett 38(11):L11401.  https://doi.org/10.1029/2011GL047290 ADSCrossRefGoogle Scholar
  11. 11.
    Alsdorf D, Rodriguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45(2):RG2002ADSCrossRefGoogle Scholar
  12. 12.
    Roy P, Sharma S, Gairola RM (2015) Detection of rain/cloud pixels by Ka-band Altika Altimeter over the tropical region: development of rain/cloud flag algorithm and its validation. Mar Geodesy 38(S1):86–106CrossRefGoogle Scholar
  13. 13.
    Gupta PK, Dubey AK, Goswami N, Singh RP, Chauhan P (2015) Use of SARAL/AltiKa observations for modeling river flow. Mar Geodesy 38:614–625.  https://doi.org/10.1080/01490419.2015.1008157 CrossRefGoogle Scholar
  14. 14.
    Dubey AK, Gupta PK, Dutta S, Singh RP (2015) Water level retrieval using SARAL/AltiKa observations in the braided Brahmaputra river. Mar Geodesy 38:549–567.  https://doi.org/10.1080/01490419.2015.1008156 CrossRefGoogle Scholar
  15. 15.
    Martin-Espanol A, Bamber JL, Zammit-Mangion A (2017) Constraining the mass balance of East Antarctica. Res Lett 44(9):4168–4175.  https://doi.org/10.1002/2017GL072937 ADSCrossRefGoogle Scholar
  16. 16.
    Remy F, Parouty S (2009) Antarctic ice sheet and radar altimetry: a review. Remote Sens 1(4)1212–1239.  https://doi.org/10.3390/rs1041212 ADSCrossRefGoogle Scholar
  17. 17.
    Chander S, Mishra SK, Chauhan P, Ajai (2015) Ice height and backscattering coefficient variability over Greenland ice sheets using SARAL radar altimeter. Mar Geodesy 38:466–476CrossRefGoogle Scholar
  18. 18.
    Sasgen I, Van-den-Broeke M, Bamber JL, Rignot E, Sorensen LS, Wounters B, Martinec Z, Velicogna I, Simonsen SB (2012) Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet Sci Lett 333–334:293–303.  https://doi.org/10.1016/j.epsl.2012.03.033 CrossRefGoogle Scholar
  19. 19.
    Hanna E, Navarro FJ, Pattyan F, Domingues CM, Fettweis X, Ivin ER, Nicholls RJ, Ritz C, Smith B, Tulaczyk S, Whitehouse PL, Zwally HJ (2013) Ice sheet mass balance and climate change. Nature 498:51–59.  https://doi.org/10.1038/nature12238 ADSCrossRefGoogle Scholar
  20. 20.
    Maheshwari M, Mahesh C, Rajkumar KS, Pallipad J, Rajak DR, Oza SR, Kumar R, Sharma R (2015) Estimation of sea ice freeboard from SARAL/AltiKa data. Mar Geodesy 38:487–496CrossRefGoogle Scholar
  21. 21.
    Laxon SW, Peacock N, Smith D (2003) High interannual variability of sea ice thickness in the Arctic region. Nature 425:947–949ADSCrossRefGoogle Scholar
  22. 22.
    Kwok R, Cunningham GF (2008) ICESat over Arctic sea ice: estimation of snow depth and ice thickness. J Geophys Res 113:C08010.  https://doi.org/10.1029/2008JC004753 ADSGoogle Scholar
  23. 23.
    Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, Kwok R, Schweiger A, Zhang J, Hass C, Hendricks S, Krishfield R, Kurtz N, Farrell S, Davidson M (2013) CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Letts 40:1–6CrossRefGoogle Scholar
  24. 24.
    Brown GS (1977) The average impulse response of a rough surface and its applications. IEEE Trans Antennas Propag 25:67–74ADSCrossRefGoogle Scholar
  25. 25.
    Deng X, Featherstone WE (2006) A coastal retracking system for satellite radar altimeter waveforms: application to ERS-2 around Australia. J Geophys Res 111:C06012.  https://doi.org/10.1029/2005JC003039 ADSGoogle Scholar
  26. 26.
    Tourneret J-Y, Mailhes C, Amarouche L, Steunou N (2008) Classification of altimetric signals using linear discriminant analysis. IEEE IGARSS 3:75–78Google Scholar
  27. 27.
    Tourneret J-Y, Mailhes C, Severini J, Thibaut P (2010) Shape Classification of altimetric signals using anomaly detection and Bayes decision rule. In: 2010 IEEE international geoscience and remote sensing symposium, Honolulu, HI. IEEE, pp 1222–1225.  https://doi.org/10.1109/IGARSS.2010.5651777
  28. 28.
    Chaudhary A, Basu S, Kumar R, Mahesh C, Sharma R (2015) Shape classification of AltiKa 40-Hz waveforms using linear discriminant analysis and Bayes decision rule in the Gujarat Coastal region. Mar Geodesy 38:62–72.  https://doi.org/10.1080/01490419.2014.1001504 CrossRefGoogle Scholar
  29. 29.
    Bonnefond P, Exertier P, Laurain O, Guillot A, Picot N, Cancet M, Lyard F (2015) SARAL/AltiKa absolute calibration from the multi-mission Corsica facilities. Mar Geodesy 38:171–192.  https://doi.org/10.1080/01490419.2015.1029656 CrossRefGoogle Scholar
  30. 30.
    Papa F, Bala SK, Pandey RK, Durand F, Gopalakrishna VV, Rahman A, Rossow WB (2012) Ganga-Brahmaputra river discharge from Jason-2 radar Altimetry: an update to long term satellite derived estimates of continental fresh water forcing flux into the Bay of Bengal. J Geophys Res 117:C11021.  https://doi.org/10.1029/2012jc008158 ADSCrossRefGoogle Scholar
  31. 31.
    Musa ZN, Popescue I, Mynett A (2015) A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation. Hydrol Earth Syst Sci 19:3755–3769ADSCrossRefGoogle Scholar
  32. 32.
    Pandey RK, Cretaux JF, Berge-Nguyen M, Tiwari VM, Drolon V, Papa F, Calmant S (2014) Water level estimation by remote sensing for the 2008 flooding of the Kosi river. Int J Rem Sens 35(2):424–440CrossRefGoogle Scholar
  33. 33.
    Sridevi T, Sharma R, Mehra P, Prasad KVSR (2016) Estimating discharge from the Godavari river using ENVISAT, Jason-2 and SARAL/Altika radar altimeters. Rem Sens Lett 7(4):348–357.  https://doi.org/10.1080/2150704X.2015.1130876 CrossRefGoogle Scholar
  34. 34.
    Ganguly D, Chander S, Desai S, Chauhan P (2015) A subwaveform-based retracker for multipeak waveforms: a case study over Ukai dam/reservoir. Mar Geodesy 38(1):581–596CrossRefGoogle Scholar
  35. 35.
    Smith Benjamin E, Gourmelen Noel, Huth Alexander, Joughin Ian (2017) Connected sub-glacial lake drainage beneath Thwaites Glacier, West Antarctica. Cryosphere 11:451–467.  https://doi.org/10.5194/tc-11-451-2017 ADSCrossRefGoogle Scholar
  36. 36.
    Mouginot J, Rignot E, Scheuchl B (2014) Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys Res Lett 41(5):1576–1584.  https://doi.org/10.1002/2013GL059069 ADSCrossRefGoogle Scholar
  37. 37.
    Jacobs Stanley S, Jenkins Adrian, Giulivi Claudia F, Dutrieux Piene (2011) Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat Geosci 4:519–523.  https://doi.org/10.1038/ngeo1188 ADSCrossRefGoogle Scholar
  38. 38.
    Peacock NR, Laxon SW (2004) Sea surface height determination in the Arctic Ocean from ERS altimetry. J Geophys Res 109(C7):C07001ADSCrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2017

Authors and Affiliations

  • Raj Kumar
    • 1
  • Rashmi Sharma
    • 1
  • R. P. Singh
    • 1
  • Praveen Gupta
    • 1
  • Sandip R. Oza
    • 1
  1. 1.Earth, Ocean, Atmosphere, Planetary Sciences and Applications AreaSpace Applications CentreAhmedabadIndia

Personalised recommendations