Bound States of the Dirac Equation for Modified Mobius Square Potential Within the Yukawa-Like Tensor Interaction

  • Akpan IkotEmail author
  • E. Maghsoodi
  • E. Ibanga
  • E. Ituen
  • H. Hassanabadi
Research Article


In this paper Dirac equation was studied in the presence of the modified Mobius square potential with a Yukawa-like tensor interaction. The eigenvalues and corresponding eigenfunctions were obtained for any-state by using Nikiforov–Uvarov method.


Dirac equation Modified Mobius square potential Spin symmetry Pseudospin symmetry Yukawa tensor interaction 


  1. 1.
    Ginocchio JN (2004) Relativistic harmonic oscillator with spin symmetry. Phys Rev C 69:034318ADSCrossRefGoogle Scholar
  2. 2.
    Ginocchio JN (1997) Pseudospin as a relativistic symmetry. Phys Rev Lett 78:436ADSCrossRefGoogle Scholar
  3. 3.
    Ginocchio JN (2005) Relativistic symmetries in nuclei and hadrons. Phys Rep 414:165–261ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Troltenier D, Bahri C, Drayer JP (1995) Generalized pseudo-SU(3) model and pairing. Nucl Phys A 586:53–72ADSCrossRefGoogle Scholar
  5. 5.
    Page PR, Goldman T, Ginocchio JN (2001) Relativistic symmetry suppresses Quark spin-orbit splitting. Phys Rev Lett 86:204ADSCrossRefGoogle Scholar
  6. 6.
    Ginocchio JN (2005) U(3) and pseudo-U(3) symmetry of the oscillator relativistic harmonic. Phys Rev Lett 95:252501ADSCrossRefGoogle Scholar
  7. 7.
    Taskin F, Kocak G (2011) Spin symmetric solutions of Dirac equation with Pöschl-Teller potential. Chin. Phys. B 20:070302CrossRefGoogle Scholar
  8. 8.
    Hamzavi M, Rajabi AA, Hassanabadi H (2012) Relativistic Morse Potential and Tensor Interaction. Few-Body Syst 52:19–29ADSCrossRefGoogle Scholar
  9. 9.
    Ginocchio JN, Leviatan A, Meng J, Zhou SG (2004) Test of pseudospin symmetry in deformed nuclei. Phys Rev C 69:034303ADSCrossRefGoogle Scholar
  10. 10.
    Ginocchio JN, Leviatan A (1998) On the relativistic foundations of pseudospin symmetry in nuclei. Phys Lett B 425:1–5ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Hassanabadi H, Maghsoodi E, Zarrinkamar S (2012) Relativistic symmetries of Dirac equation and the Tietz potential. Euro. Phys. J. Plus 127:31CrossRefzbMATHGoogle Scholar
  12. 12.
    Hamzavi H, Rajabi AA, Hassanabadi H (2010) Exact pseudospin symmetry solution of the Dirac equation for spatially-dependent mass Coulomb potential including a Coulomb-like tensor interaction via asymptotic iteration method. Phys Lett A 374:4303–4307ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Setare MR, Nazari Z (2009) Solution of Dirac equations with ve-parameter exponent-type potential. Acta Phys Pol B 40:2809–2824ADSMathSciNetGoogle Scholar
  14. 14.
    Ikhdair SM, Sever R (2010) Approximate bound state solutions of Dirac equationwith Hulthén potential including Coulomb-like tensor potential. Appl Math Comput 216:911–923MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hassanabadi H, Maghsoodi E, Zarrinkamar S, Rahimov H (2012) Dirac equation for generalized Pöschl-Teller scalar and vector potentials and a Coulomb tensor interaction by Nikiforov-Uvarov method. J Math Phys 53:022104ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hassanabadi H, Zarrinkamar S, Hamzavi M (2012) Few-Body Syst 37:209MathSciNetGoogle Scholar
  17. 17.
    Hassanabadi H, Zarrinkamar S, Rajabi AA (2011) Exact solutions of D-dimensional schrödinger equation for an energy-dependent potential by NU method. Commun Theor Phys 55:541ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yazarloo BH, Hassanabadi H, Zarrinkamar S (2012) Oscillator strengths based on the Möbius square potential under Schrödinger equation. Eur Phys J Plus 127:51CrossRefGoogle Scholar
  19. 19.
    Hassanabadi H, Maghsoodi E, Zarrinkamar S, Rahimov H (2011) An approximate solution of the Dirac equation for Hyperbolic scalar and vector potentials and a Coulomb tensor interaction by SUSYQM. Mod Phys Lett A 26(36):2703–2718ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ikot AN (2012) Solutions of Dirac equation for generalized hyperbolical potential including Coulomb-like tensor potential with spin symmetry. Few-Body Syst 53:549–555ADSCrossRefGoogle Scholar
  21. 21.
    Boonserm P, Visser M (2011) Quasi-normal frequencies: key analytic results. JHEP 1103:073ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Nikiforov AF, Uvarov VB (1988) Special functions of mathematical physics. Birkhauser, BaselCrossRefzbMATHGoogle Scholar
  23. 23.
    Tezcan C, Sever R (2009) A general approach for the exact solution of the Schrödinger equation. Int J Theor Phys 48:337–350MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Maghsoodi E, Hassanabadi H, Aydogdu O (2012) Dirac particles in the presence of the Yukawa potential plus a tensor interaction in SUSYQM framework. Phys Scr 86:015005ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Alberto P, Lisboa R, Malheiro M, de Catro AS (2005) Tensor coupling and pseudospin symmetry in nuclei. Phys Rev C 71:034313ADSCrossRefGoogle Scholar
  26. 26.
    Lisboa R, Malheiro M, de Castro AS, Alberto P, Fiolhais M (2004) Pseudospin symmetry and the relativistic harmonic oscillator. Phys Rev C 69:024319ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Meng J, Sugawara-Tanabe K, Yamaji S, Ring P, Arima A (1998) Pseudospin symmetry in relativistic mean field theory. Phys Rev C 58:R628(R)ADSCrossRefGoogle Scholar
  28. 28.
    Aydogdu O, Sever R (2011) The Dirac-Yukawa problem in view of pseudospin symmetry. Phys Scr 84:025005ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    Pekeris CL (1934) The rotation-vibration coupling in diatomic molecules. Phys Rev 45:98ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Maghsoodi E, Hassanabadi H, Zarrinkamar S (2012) Spectrum of Dirac equation under Deng-Fan Scalar and Vector potentials and a Coulomb tensor interaction by SUSYQM. Few-Body Syst 53:525–538ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Ikot AN, Maghsoodi E, Zarrinkamar S, Naderi L, Hassanabadi H (2014) Bound state solutions of the Dirac equation for the Eckart potential with Coulomb-like Yukawa-like tensor interactions. Few-Body Syst 55:241–253ADSCrossRefGoogle Scholar
  32. 32.
    Ikhdair SM (2011) An approximate κ state solutions of the Dirac equation for the generalized Morse potential under spin and pseudospin symmetry. J Math Phys 52:052303ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2016

Authors and Affiliations

  • Akpan Ikot
    • 1
    Email author
  • E. Maghsoodi
    • 1
  • E. Ibanga
    • 1
  • E. Ituen
    • 1
  • H. Hassanabadi
    • 2
  1. 1.Theoretical Physics Group, Department of PhysicsUniversity of Port HarcourtPort HarcourtNigeria
  2. 2.Physics DepartmentUniversity of ShahroodShahroodIran

Personalised recommendations