High Charge Carrier Mobility in Two Dimensional Indium (III) Isophthalic Acid Based Frameworks

  • Tamas Panda
  • Rahul BanerjeeEmail author
Research Article


The effect of dimensionality (1D to 2D) on charge carrier mobility have been studied thoroughly on three In(III)-isophthalate based MOFs [In-IA-1D, In-IA-2D-1 and -2]. In-IA-1D possess 1D nanotubular architecture with [(CH3)2NH2]+. In-IA-2D-1 have 2D layers containing only [(CH3)2NH2]+ cations. Whereas, In-IA-2D-2 have [(CH3)2NH2]+ cations as well as solvent DMF molecule inside the crystal structure. Due to presence of the π–π stacking arrangement among the phenyl rings of IA moieties facilitates the high charge carrier mobility (4.6 × 10−3 cm2 V−1 s−1 at VG = −40 V) in In-IA-2D-2. However, In-IA-1D and In-IA-2D-1 does not show any charge carrier mobility due to absence of π–π stacking arrangement.


Metal organic framework Charge carrier mobility Coordination chemistry π–π stacking 



TP acknowledge CSIR for SRF. RB acknowledges CSIR’s Five Year Plan Project (CSC0122 and CSC0102) for funding. Financial assistance from BRNS (2011/37C/44/BRNS) is acknowledged. We also acknowledge Dr K. Krishnamoorthy and Mr Arulraj Arulkashmir for their kind help regarding charge carrier mobility studies.


  1. 1.
    Wei Z, Hong W, Geng H, Wang C, Liu Y, Li R, Xu W, Shuai Z, Hu W, Wang Q, Zhu D (2010) Organic single crystal field-effect transistors based on 6h-pyrrolo[3,2–b:4,5–b] bis [1,4] benzothiazine and its derivatives. Adv Mater 22:2458–2462CrossRefGoogle Scholar
  2. 2.
    Jiang L, Hu W, Wei Z, Xu W, Meng H (2009) High-performance organic single-crystal transistors and digital inverters of an anthracene derivative. Adv Mater 21:3649–3653CrossRefGoogle Scholar
  3. 3.
    Kang SJ, Bae I, Park YJ, Park TH, Sung J, Yoon SC, Kim KH, Choi DH, Park C (2009) Non-volatile ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) memory based on a single-crystalline tri-isopropylsilylethynyl pentacene field-effect transistor. Adv Funct Mater 19:1609–1616CrossRefGoogle Scholar
  4. 4.
    Sirringhaus H (2005) Device physics of solution-processed organic field-effect transistors. Adv Mater 17:2411–2425CrossRefGoogle Scholar
  5. 5.
    Sun Y, Liu Y, Zhu D (2005) Advances in organic field-effect transistors. J Mater Chem 15:53–65CrossRefGoogle Scholar
  6. 6.
    Veres J, Ogier S, Lloyd G, de Leeuw D (2004) Gate insulators in organic field-effect transistors. Chem Mater 16:4543–4555CrossRefGoogle Scholar
  7. 7.
    Katz HE, Bao Z, Gilat SL (2001) Synthetic chemistry for ultrapure, processable, and high-mobility organic transistor semiconductors. Acc Chem Res 34:359–369CrossRefGoogle Scholar
  8. 8.
    Murphy AR, Frechet JMJ (2007) Organic semiconducting oligomers for use in thin film transistors. Chem Rev 107:1066–1096CrossRefGoogle Scholar
  9. 9.
    Wang L, Nan F, Yang X, Peng Q, Li Q, Shuai Z (2010) Computational methods for design of organic materials with high charge mobility. Chem Soc Rev 39:423–434CrossRefGoogle Scholar
  10. 10.
    Eddaoudi M, Moler DB, Li H, Chen B, Reinekee TM, O’Keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res 34:319–330CrossRefGoogle Scholar
  11. 11.
    Janiak C (1997) Functional organic analogues of zeolites based on metal–organic coordination framework. Angew Chem Int Ed Engl 36:1431–1434CrossRefGoogle Scholar
  12. 12.
    Blake AJ, Champness NR, Hubberstey P, Li W-S, Withersby MA, Schroder M (1999) Inorganic crystal engineering using self-assembly of tailored building-blocks. Coord Chem Rev 183:117–138CrossRefGoogle Scholar
  13. 13.
    Kesanli B, Cui Y, Smith M, Bittner E, Bockrath B, Lin W (2005) Highly interpenetrated metal–organic frameworks for hydrogen storage. Angew Chem Int Ed 44:72–75CrossRefGoogle Scholar
  14. 14.
    Kitagawa S, Kitaura R, Noro S-I (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375CrossRefGoogle Scholar
  15. 15.
    Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214CrossRefGoogle Scholar
  16. 16.
    Chen B, Xiang S, Qian G (2010) Metal−organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115–1124CrossRefGoogle Scholar
  17. 17.
    Ma L, Abney C, Lin W (2009) Enantioselective catalysis with homochiral metal–organic frameworks. Chem Soc Rev 38:1248–1256CrossRefGoogle Scholar
  18. 18.
    Gu ZG, Cai YP, Fang HC, Zhou ZY, Thallapally PK, Tian JA, Liu J, Exarhos GJ (2010) Conversion of nonporous helical cadmium organic framework to a porous form. Chem Commun 46:5373–5375CrossRefGoogle Scholar
  19. 19.
    Chen B, Eddaoudi M, Hyde ST, O’Keeffe M, Yaghi OM (2001) Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291:1021–1023CrossRefADSGoogle Scholar
  20. 20.
    Panda T, Pachfule P, Chen Y, Jiang J, Banerjee R (2011) Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. Chem Commun 47:2011–2013CrossRefGoogle Scholar
  21. 21.
    Panda T, Pachfule P, Banerjee R (2011) Template induced structural isomerism and enhancement of porosity in manganese(II) based metal–organic frameworks (Mn-MOFs). Chem Commun 47:7674–7676CrossRefGoogle Scholar
  22. 22.
    Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41:6010–6022CrossRefGoogle Scholar
  23. 23.
    Bertrand GHV, Michaelis VK, Ong T-C, Griffin RG, Dinca M (2013) Thiophene-based covalent organic frameworks. Proc Natl Acad Sci USA 110:4923–4928CrossRefADSGoogle Scholar
  24. 24.
    Narayan TC, Miyakai T, Seki S, Dinca M (2012) High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework. J Am Chem Soc 134:12932–12935CrossRefGoogle Scholar
  25. 25.
    Sun L, Miyakai T, Seki S, Dinca M (2013) Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): a microporous MOF with infinite (-Mn-S-) chains and high intrinsic charge mobility. J Am Chem Soc 135:8185–8188CrossRefGoogle Scholar
  26. 26.
    Panda T, Kundu T, Banerjee R (2013) Structural isomerism leading to variable proton conductivity in indium (III) isophthalic acid based frameworks. Chem Commun 49:6197–6199CrossRefGoogle Scholar
  27. 27.
    Panda T, Kundu T, Banerjee R (2012) Self-assembled one dimensional functionalized metal–organic nanotubes (MONTs) for proton conduction. Chem Commun 48:5464–5466CrossRefGoogle Scholar
  28. 28.
    Noh Y-Y, Kim J-J, Yoshida Y, Yase K (2003) Triangular nanoplates of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Adv Mater 15:695–699CrossRefGoogle Scholar
  29. 29.
    Arulkashmir A, Mahale RY, Dharmapurikar SS, Jangid MK, Krishnamoorthy K (2012) Supramolecular interaction facilitated small molecule films for organic field effect transistors. Polym Chem 3:1641–1646CrossRefGoogle Scholar
  30. 30.
    Lu W, Roy VAL, Che CM (2006) Self-assembled nanostructures with tridentate cyclometalated platinum(II) complexes. Chem Commun 38:3972–3974CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2014

Authors and Affiliations

  1. 1.Physical/Materials Chemistry DivisionCSIR National Chemical LaboratoryPuneIndia

Personalised recommendations