Advertisement

Slow Magnetic Relaxation in an Asymmetrically Coupled Heptanuclear Dysprosium(III)–Nickel(II) Architecture

  • Soumya Mukherjee
  • Biplab Joarder
  • Shufang Xue
  • Jinkui Tang
  • Sujit K. GhoshEmail author
Research Article

Abstract

A new dysprosium(III)–nickel(II) heterometallic cluster, namely, [Dy 3 III Ni 4 II (L)6(OH)4(CH3OH)3(CH3CN)(NO3)(OH2)]·(CH3CN)3(CH3OH)2 (H2O)2 (1), has been synthesized from the schiff-base ligand H2L (L = o-phenolsalicylimine), dysprosium nitrate and nickel nitrate. A single-crystal X-ray diffraction study reveals that the highly asymmetric core of 1 consists of an unprecedented edge-sharing arrangement of three dissimilar Dy2Ni triangles, along with one Dy2Ni2 rectangle, connected to one side of the central metallic core. Both static (dc) and dynamic (ac) magnetic properties of 1 have been studied. The results reveal that compound 1 exhibits slow relaxation of the magnetization, making 1 a remarkable new addition to the family of Ln–Ni single molecule magnets, having a new asymmetric Ni4Dy3-architecture.

Graphical Abstract

Keywords

Dysprosium Nickel Cluster compounds Asymmetry Slow magnetic relaxation 

Notes

Acknowledgments

Authors thank CSIR for SRF (B.J.). DST (project no. GAP/DST/CHE-12-0083) and IISER Pune for financial support.

Supplementary material

40010_2013_116_MOESM1_ESM.doc (1.2 mb)
Supporting Information: Experimental section, physical measurements, X-ray crystal structure determination, PXRD, TGA, FTIR and additional structural data and diagrams provided in Supporting Information. (DOC 1218 kb)

References

  1. 1.
    Zaleski CM, Depperman EC, Kampf JW, Kirk ML, Pecoraro VL (2004) Synthesis, structure, and magnetic properties of a large lanthanide–transition-metal single-molecule magnet. Angew Chem Int Ed 43:3912–3914CrossRefGoogle Scholar
  2. 2.
    Zhang YZ, Wernsdorfer W, Pan F, Wang ZM, Gao S (2006) An azido-bridged disc-like heptanuclear cobalt(II) cluster: towards a single-molecule magnet. Chem Commun 3302–3304Google Scholar
  3. 3.
    Costes JP, Shova S, Wernsdorfer W (2008) Tetranuclear [Cu–Ln]2 single molecule magnets: synthesis, structural and magnetic studies. Dalton Trans 1843–1849Google Scholar
  4. 4.
    Chibotaru L, Ungur L, Soncini A (2008) The origin of nonmagnetic Kramers doublets in the ground state of dysprosium triangles: evidence for a toroidal magnetic moment. Angew Chem Int Ed 47:4126–4129CrossRefGoogle Scholar
  5. 5.
    Gamer M, Lan Y, Roesky PW, Powell AK, Cleràc R (2008) Pentanuclear dysprosium hydroxy cluster showing single-molecule-magnet behavior. Inorg Chem 47:6581–6583CrossRefGoogle Scholar
  6. 6.
    Lin PH, Burchell TJ, Cleràc R, Murugesu M (2008) Dinuclear dysprosium(III) single-molecule magnets with a large anisotropic barrier. Angew Chem Int Ed 47:8848–8851CrossRefGoogle Scholar
  7. 7.
    Zheng YZ, Lan Y, Anson CE, Powell AK (2009) Anion-perturbed magnetic slow relaxation in planar Dy4 clusters. Inorg Chem 47:10813–10815CrossRefGoogle Scholar
  8. 8.
    Burrow CE, Burchell TJ, Lin PH, Habib F, Wernsdorfer W, Cleràc R, Murugesu M (2009) Salen-based [Zn2Ln3] complexes with fluorescence and single-molecule-magnet properties. Inorg Chem 48:8051–8053CrossRefGoogle Scholar
  9. 9.
    Lin PH, Burchell TJ, Ungur L, Chibotaru LF, Wernsdorfer W, Murugesu M (2009) A polynuclear lanthanide single-molecule magnet with a record anisotropic barrier. Angew Chem Int Ed 48:9489–9492CrossRefGoogle Scholar
  10. 10.
    Xu GF, Wang QL, Gamez P, Ma Y, Cleràc R, Tang J, Yan SP, Cheng P, Liao DZ (2010) A promising new route towards single-molecule magnets based on the oxalate ligand. Chem Commun 46:1506–1508CrossRefGoogle Scholar
  11. 11.
    Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125:8694–8695CrossRefGoogle Scholar
  12. 12.
    Joarder B, Chaudhari AK, Rogez G, Ghosh SK (2012) A carboxylate-based dinuclear dysprosium(III) cluster exhibiting slow magnetic relaxation behaviour. Dalton Trans 41:7695–7699CrossRefGoogle Scholar
  13. 13.
    Christou G, Gatteschi D, Hendrickson DN, Sessoli R (2000) Single-molecule magnets. MRS Bull 25:66–71CrossRefGoogle Scholar
  14. 14.
    Li Q, Vincent JB, Libby E, Chang HR, Huffman JC, Boyd PDW, Christou G, Hendrickson DN (1988) Structure, magnetochemistry and biological relevance of [Mn4O3Cl4(OAc)3(py)3], a complex with S = 9/2 ground state. Angew Chem Int Ed 27:1731–1733CrossRefGoogle Scholar
  15. 15.
    Sessoli R, Gatteschi R, Caneschi A, Novak MA (1993) Magnetic bistability in a metal-ion cluster. Nature 365:141–143CrossRefADSGoogle Scholar
  16. 16.
    Sessoli R, Tsai H-L, Schake AR, Wang S, Vincent JB, Folting K, Gatteschi D, Christou G, Hendrickson DN (1993) High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J Am Chem Soc 115:1804–1816CrossRefGoogle Scholar
  17. 17.
    Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2004) Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: a new category of magnets at the single-molecular level. J Phys Chem B 108:11265–11271CrossRefGoogle Scholar
  18. 18.
    Ishikawa N, Mizuno Y, Takamatsu S, Ishikawa T, Koshihara S (2008) Effects of chemically induced contraction of a coordination polyhedron on the dynamical magnetism of bis(phthalocyaninato)disprosium, a single-4f-ionic single-molecule magnet with a Kramers ground state. Inorg Chem 47:10217–10219CrossRefGoogle Scholar
  19. 19.
    Hewitt IJ, Lan YH, Anson CE, Luzon J, Sessoli R, Powell AK (2009) Opening up a dysprosium triangle by ligand oximation. Chem Commun 6765–6767Google Scholar
  20. 20.
    Li DP, Wang TW, Li CH, Liu DS, Li YZ, You XZ (2010) Single-ion magnets based on mononuclear lanthanide complexes with chiral Schiff base ligands [Ln(FTA)3L] (Ln = Sm, Eu, Gd, Tb and Dy). Chem Commun 46:2929–2931CrossRefGoogle Scholar
  21. 21.
    Gonidec M, Luis F, Vilchez A, Esquena J, Amabilino DB, Veciana J (2010) A liquid-crystalline single-molecule magnet with variable magnetic properties. Angew Chem Int Ed 49:1623–1626CrossRefGoogle Scholar
  22. 22.
    Caneschi A, Gatteschi D, Sessoli R, Barra AL, Brunel LC, Guillot M (1991) Alternating current susceptibility, high field magnetization, and millimeter band EPR evidence for a ground S = 10 state in [Mn12O12(Ch3COO)16(H2O)4]·2CH3COOH·4H2O. J Am Chem Soc 113:5873–5874CrossRefGoogle Scholar
  23. 23.
    Gatteschi D, Caneschi A, Pardi L, Sessoli R (1994) Large clusters of metal ions: the transition from molecular to bulk magnets. Science 265:1054–1058CrossRefADSGoogle Scholar
  24. 24.
    Roch N, Florens S, Bouchiat V, Wernsdorfer W, Balestro F (2008) Quantum phase transition in a single-molecule quantum dot. Nature 453:633–637CrossRefADSGoogle Scholar
  25. 25.
    Lin S, Zhao L, Ke H, Guo YN, Tang J, Guoa Y, Dou J (2012) Steric hindrances create a discrete linear Dy4 complex exhibiting SMM behaviour. Dalton Trans 41:3248–3252CrossRefGoogle Scholar
  26. 26.
    Guo YN, Xu GF, Guo Y, Tang J (2011) Relaxation dynamics of dysprosium(III) single molecule magnets. Dalton Trans 40:9953–9963CrossRefGoogle Scholar
  27. 27.
    Coronado E, Day P (2004) Magnetic molecular conductors. Chem Rev 104:5419–5448CrossRefGoogle Scholar
  28. 28.
    Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179–186CrossRefADSGoogle Scholar
  29. 29.
    Boskovic C, Brechin EK, Streib WE, Folting K, Bollinger JC, Hendrickson DN, Christou G (2002) Single-molecule magnets: a new family of Mn12 clusters of formula [Mn12O8X4(O2CPh)8L6]. J Am Chem Soc 124:3725–3736Google Scholar
  30. 30.
    Tang J, Hewitt I, Madhu NT, Chastanet G, Wernsdorfer W, Anson CE, Benelli C, Sessoli R, Powell AK (2006) Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew Chem Int Ed 45:1729–1733CrossRefGoogle Scholar
  31. 31.
    Ke H, Xu GF, Zhao L, Tang J, Zhang XY, Zhang HJ (2009) A Dy10 cluster incorporates two sets of vertex-sharing Dy3 triangles. Chem Eur J 15:10335–10338CrossRefGoogle Scholar
  32. 32.
    Hussain B, Savard D, Burchell TJ, Wernsdorfer W, Murugesu M (2009) Linking high anisotropy Dy3 triangles to create a Dy6 single-molecule magnet. Chem Commun 1100–1102Google Scholar
  33. 33.
    Hewitt IJ, Tang J, Madhu NT, Anson CE, Lan Y, Luzon J, Etienne M, Sessoli R, Powell AK (2010) Coupling Dy3 triangles enhances their slow magnetic relaxation. Angew Chem Int Ed 49:6352–6356CrossRefGoogle Scholar
  34. 34.
    Rinehart JD, Long JR (2011) Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci 2:2078–2085CrossRefGoogle Scholar
  35. 35.
    Xue S, Zhao L, Guo Y, Zhanga P, Tang J (2012) The use of a versatile o-vanilloyl hydrazone ligand to prepare SMM-like Dy3 molecular cluster pair. Chem Commun 48:8946–8948CrossRefGoogle Scholar
  36. 36.
    Zhao L, Xue S, Tang J (2012) A dodecanuclear dysprosium wheel assembled by six vertex-sharing Dy3 triangles exhibiting slow magnetic relaxation. Inorg Chem 51:5994–5996CrossRefGoogle Scholar
  37. 37.
    Lin SY, Wernsdorfer W, Ungur L, Powell AK, Guo Y, Tang J, Zhao L, Chibotaru LF, Zhang HJ (2012) Coupling Dy3 triangles to maximize the toroidal moment. Angew Chem Int Ed 51:12767–12771CrossRefGoogle Scholar
  38. 38.
    Langley SK, Moubaraki B, Murray KS (2012) Magnetic properties of hexanuclear lanthanide(III) clusters incorporating a central μ6-carbonate ligand derived from atmospheric CO2 fixation. Inorg Chem 51:3947–3949CrossRefGoogle Scholar
  39. 39.
    Ungur L, Langley SK, Hooper TN, Moubaraki B, Brechin EK, Murray KS, Chibotaru LF (2012) Net toroidal magnetic moment in the ground state of a {Dy6}-triethanolamine ring. J Am Chem Soc 134:18554–18557CrossRefGoogle Scholar
  40. 40.
    Chaudhari AK, Joarder B, Rivière E, Rogez G, Ghosh SK (2012) Nitrate-bridged “Pseudo-Double-Propeller”-type lanthanide(III)–copper(II) heterometallic clusters: syntheses, structures, and magnetic properties. Inorg Chem 51:9159–9161CrossRefGoogle Scholar
  41. 41.
    Ke H, Zhao L, Guo Y, Tang J (2011) A Dy6 cluster displays slow magnetic relaxation with an edge-to-edge arrangement of two Dy3 triangles. Eur J Inorg Chem 4153–4156Google Scholar
  42. 42.
    Efthymiou CG, Georgopoulou AN, Papatriantafyllopoulou C, Terzis A, Raptopoulou CP, Escuer A, Perlepes SP (2010) Tetranuclear copper(I) carboxylates: the effect of a stepwise increase in Lewis acidity on solid-state structures and photoluminescence. Dalton Trans 39:8603–8605CrossRefGoogle Scholar
  43. 43.
    Gao Y, Zhao L, Xu X, Xu G-F, Guo Y-N, Tang J, Liu Z (2011) Heterometallic cubanes: syntheses, structures, and magnetic properties of lanthanide(III)−nickel(II) architectures. Inorg Chem 50:1304–1308CrossRefGoogle Scholar
  44. 44.
    Efthymiou CG, Stamatatos TC, Papatriantafyllopoulou C, Tasiopoulos AJ, Wernsdorfer W, Perlepes SP, Christou G (2010) Nickel/lanthanide single-molecule magnets: Ni3Ln “stars” with a ligand derived from the metal-promoted reduction of Di-2-pyridyl ketone under solvothermal conditions. Inorg Chem 49:9737–9739CrossRefGoogle Scholar
  45. 45.
    Costes J-P, Vendier L (2010) Structural and magnetic studies of new NiII–LnIII complexes. Eur J Inorg Chem 2768–2773Google Scholar
  46. 46.
    Papatriantafyllopoulou C, Stamatatos TC, Efthymiou CG, C-Silva L, Paz FAA, Perlepes SP, Christou G (2010) A high-nuclearity 3d/4f metal oxime cluster: an unusual Ni8Dy8 “Core–Shell” complex from the use of 2-pyridinealdoxime. Inorg Chem 49:9743–9745CrossRefGoogle Scholar
  47. 47.
    Hosoi A, Yukawa Y, Igarashi S, Teat SJ, Roubeau O, Evangelisti M, Cremades E, Ruiz E, Barrios LA, Aromi G (2011) A molecular pair of [GdNi3] tetrahedra bridged by water molecules. Chem Eur J 17:8264–8268CrossRefGoogle Scholar
  48. 48.
    Zheng Y-Z, Evangelisti M, Winpenny REP (2011) Large magnetocaloric effect in a Wells–Dawson type Ni6Gd6P6 cage. Angew Chem Int Ed 50:3692–3695CrossRefGoogle Scholar
  49. 49.
    Mondal KC, Kostakis GE, Lan Y, Wernsdorfer W, Anson CE, Powell AK (2011) Defect-dicubane Ni2Ln2 (Ln = Dy, Tb) single molecule magnets. Inorg Chem 50:11604–11611CrossRefGoogle Scholar
  50. 50.
    Kim S, Noh JY, Kim KY, Kim JH, Kang HK, Nam SW, Kim SH, Park S, Kim C, Kim J (2012) Salicylimine-based fluorescent chemosensor for aluminum ions and application to bioimaging. Inorg Chem 51:3597–3602CrossRefGoogle Scholar
  51. 51.
    Costes J-P, Dahan F, Dupuis A, Laurent J-P (1997) Experimental evidence of a ferromagnetic ground state (S = 9/2) for a dinuclear Gd(III)−Ni(II) complex. Inorg Chem 36:4284–4286CrossRefGoogle Scholar
  52. 52.
    Chen Q-Y, Luo Q-H, Zheng L-M, Wang Z-L, Chen J-T (2002) A study on the novel d–f Heterodinuclear Gd(III)−Ni(II) cryptate: synthesis, crystal structure, and magnetic behavior. Inorg Chem 41:605–609CrossRefGoogle Scholar
  53. 53.
    Mori F, Ishida T, Nogami T (2005) Structure and magnetic properties of 3d–4f heterometallic complexes containing di-2-pyridyl ketoximate: an approach to single-molecule magnets. Polyhedron 24:2588–2592CrossRefGoogle Scholar
  54. 54.
    Yamaguchi T, Sunatsuki Y, Ishida H, Kojima M, Akashi H, Re N, Matsumoto N, Pochaba A, Mrozinski J (2008) Synthesis, structures, and magnetic properties of face-sharing heterodinuclear Ni(II)–Ln(III) (Ln = Eu, Gd, Tb, Dy) complexes. Inorg Chem 47:5736–5745CrossRefGoogle Scholar
  55. 55.
    Pasatoiu TD, Sutter J-P, Madalan AM, Fellah FZC, Duhayon C, Andruh M (2011) Preparation, crystal structures, and magnetic features for a series of dinuclear [NiIILnIII] Schiff-Base complexes: evidence for slow relaxation of the magnetization for the DyIII derivative. Inorg Chem 50:5890–5898CrossRefGoogle Scholar
  56. 56.
    Colacio E, Ruiz J, Mota AJ, Palacios MA, Cremades E, Ruiz E, White FJ (2012) Family of carboxylate- and nitrate-diphenoxo triply bridged dinuclear NiIILnIII complexes (Ln = Eu, Gd, Tb, Ho, Er, Y): synthesis, experimental and theoretical magneto-structural studies, and single-molecule magnet behavior, E.K. Brechin. Inorg Chem 51:5857–5868CrossRefGoogle Scholar
  57. 57.
    Ghosh S, Silber GT, White AJP, Robertson N, Vilar R (2013) Synthesis of a self-assembled copper(II) metallorectangle with a guanosine-substituted terpyridine. Dalton Trans 42:13813–13816CrossRefGoogle Scholar
  58. 58.
    Tzeng Y-W, Lin C-J, Nakano M, Yang C-I, Wanc W-L, Lai L-L (2013) A semi-flexible aminotriazine-based bis-methylpyridine ligand for the design of nickel(II) spin clusters. Dalton Trans. doi: 10.1039/c3dt52903g

Copyright information

© The National Academy of Sciences, India 2014

Authors and Affiliations

  • Soumya Mukherjee
    • 1
  • Biplab Joarder
    • 1
  • Shufang Xue
    • 2
  • Jinkui Tang
    • 2
  • Sujit K. Ghosh
    • 1
    Email author
  1. 1.Indian Institute of Science Education and Research (IISER) PunePuneIndia
  2. 2.State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunChina

Personalised recommendations