Advertisement

Effect of Silver Impregnation on Efficiency of ZnO for Photocatalytic Degradation of Eosin Y

  • S. Siva Kumar
  • V. Ranga Rao
  • G. Nageswara RaoEmail author
Research Article
  • 171 Downloads

Abstract

The photocatalytic degradation of Eosin Y, a xanthenes dye has been investigated under visible light irradiation in the presence of aqueous suspension of ZnO and silver impregnated ZnO at various conditions. ZnO was impregnated with Ag of varying concentrations such as 0.5, 1.0, 1.5 at.% and the samples were calcined at various temperatures for 2 h. The catalyst was characterized by XRD, SEM and UV–Visible diffuse reflectance spectroscopic studies. The photocatalytic activity of ZnO was found to be enhanced by silver impregnation and 1 at.% of silver impregnated ZnO has high photocatalytic activity. Calcinations of samples at higher temperature decreased the photocatalytic activity. Effect of various parameters such as catalyst loading, initial concentration of dye and pH of the solution on dye degradation was also studied. The kinetics of dye degradation showed that the data were well fitted to pseudo-first order kinetic model.

Keywords

Photocatalysis Silver impregnated ZnO Eosin Y Dye degradation Textile effluents 

Notes

Acknowledgments

The authors thank the UGC Networking program, University of Hyderabad, India for providing instrumental facility to carry out XRD and SEM analyses.

References

  1. 1.
    Reife A, Fremann HS (1996) Environmental chemistry of dyes and pigments. Wiley, New YorkGoogle Scholar
  2. 2.
    Robinson TF, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluents: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255. doi: 10.1016/s0960-8524(00)00080-8 CrossRefGoogle Scholar
  3. 3.
    Zamora PP, Kunz A, Moraes SG, Pelegrini R, Moleiro PV, Reyes J, Duran N (1999) Degradation of reactive dyes. I. A comparative study of ozonation, enzymatic and photochemical processes. Chemosphere 38:835–852CrossRefGoogle Scholar
  4. 4.
    Ladakowicz L, Solecka M, Zylla R (2001) Biodegradation, decolorization and detoxification of textile wastewater enhanced by advanced oxidation processes. J Biotechnol 89:175–184CrossRefGoogle Scholar
  5. 5.
    Georgiou D, Melidis P, Aivasidis A, Gimouhopoulos K (2002) Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dye Pigment 52:69–78. doi: 10.1016/s0143-7208(01)00078-X CrossRefGoogle Scholar
  6. 6.
    Chaudari SK, Sur B (2000) Oxidative decolorization of reactive dye solution using fly ash as catalyst. J Environ Eng 126:583–594. doi: 10.1061/(ASCE)0733-9372(2001)126:7(583 CrossRefGoogle Scholar
  7. 7.
    Stock NL, Peller J, Vinodgopal K, Kamat PV (2000) Combinative sonolysis and photocatalysis for textile dye degradation. Environ Sci Technol 34:1747–1750. doi: 10.1021/es991231c CrossRefGoogle Scholar
  8. 8.
    Fox MA, Dulay M (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357. doi: 10.1021/cr00017a016 CrossRefGoogle Scholar
  9. 9.
    Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698. doi: 10.1021/cr00018a003 CrossRefGoogle Scholar
  10. 10.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. doi: 10.1021/cr00033a004 CrossRefGoogle Scholar
  11. 11.
    Ollis DF, Al-Ekabi H (1993) Photocatalytic purification and treatment of water and air. Elsevier Science, AmsterdamGoogle Scholar
  12. 12.
    Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122:178–192. doi: 10.1016/0021-9517(90)90269-p CrossRefGoogle Scholar
  13. 13.
    Kusvuran E, Samil A, Atanur OM, Erbatur O (2005) Photocatalytic degradation of di- and tri-substituted phenolic compounds in aqueous solution by TiO2/UV. Appl Catal B 58:211–216. doi: 10.1016/j.apcatb.2004.11.023 CrossRefGoogle Scholar
  14. 14.
    Khodja AA, Sehili T, Pilichowski JF, Boule P (2001) Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J Photochem Photobiol A 141:231–239. doi: 10.1016/s1010-6030(01)00423-3 CrossRefGoogle Scholar
  15. 15.
    Vinodgopal K, Kamat PV (1995) Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ Sci Technol 29:841–845. doi: 10.1021/es00003a037 CrossRefGoogle Scholar
  16. 16.
    Lizama C, Freer J, Baeza J, Mansilla HD (2002) Optimized photodegradation of reactive blue 19 on TiO2 and ZnO suspensions. Catal Today 76:235–246. doi: 10.1016/s0920-5861(02)00222-5 CrossRefGoogle Scholar
  17. 17.
    Akyol A, Yatmaz HC, Bayramoglu M (2004) Photocatalytic degradation of remazol red RR in aqueous ZnO suspensions. Appl Catal B 54:19–24CrossRefGoogle Scholar
  18. 18.
    Sakthivel S, Neppolian B, Shankar BV, Arabindoo B, Palinichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82. doi: 10.1016/s0927-0248(02)00255-6 CrossRefGoogle Scholar
  19. 19.
    Carson FL (1997) Histology. A self-instructional text. ASCP Press, ChicagoGoogle Scholar
  20. 20.
    Culling CF, Allison RT, Barr WT (1985) Cellular pathology techniques. Butterworths–Heinemenn, OxfordGoogle Scholar
  21. 21.
    Lynn G, Sansone EB (1994) Destruction of hazardous chemicals in the laboratory. Wiley, New YorkGoogle Scholar
  22. 22.
    Sax NI (1992) Dangerous properties of industrial materials. Van Nostrand Reinhold, New YorkGoogle Scholar
  23. 23.
    Pillai SC, Kelly JM, McCormack DE, O’Brine P, Raghavendra R (2003) The effect of processing conditions on varistors prepared from nanocrystalline ZnO. J Mater Chem 13:2586–2590. doi: 10.1039/b306280c CrossRefGoogle Scholar
  24. 24.
    Seery MK, George R, Floris P, Pillai SC (2007) Silver impregnated titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photochem Photobiol A 189:258–263CrossRefGoogle Scholar
  25. 25.
    Cimitan S, Albonetti S, Forni L, Peri F, Lazzari D (2009) Solvothermal synthesis and properties control of doped ZnO nanoparticles. J Colloid Interface Sci 329:73–80. doi: 10.1016/j.jcis.2008.09.060 CrossRefGoogle Scholar
  26. 26.
    Georgekutty R, Seery MK, Pillai SC (2008) A highly efficient Ag–ZnO photocatalyst: synthesis, properties and mechanism. J Phys Chem C 112:13563–13570. doi: 10.1021/jp802729a CrossRefGoogle Scholar
  27. 27.
    Daneshvar N, Salari D, Khataee AR (2003) Photocatalytic degradation of azo dye acid red 14 in water on ZnO and an alternative catalyst to TiO2. J Photochem Photobiol A 157:111–116. doi: 10.1016/s1010-6030(03)00378-2 CrossRefGoogle Scholar
  28. 28.
    Galindo C, Jacques P, Calt A (2001) Photo oxidation of phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations. Chemosphere 45:997–1005CrossRefGoogle Scholar
  29. 29.
    Subbarao KV, Lavendrine B, Boule P (2003) Influence of metallic species on TiO2 for the photocatalytic degradation of dyes and dye intermediates. J Photochem Photobiol A 154:189–193CrossRefGoogle Scholar
  30. 30.
    Hermann JM, Disdier J, Pichat P (1986) Photoassisted platinum deposition on TiO2 powder using various platinum complexes. J Phys Chem 90:6028–6034. doi: 10.1021/j100280a114 CrossRefGoogle Scholar
  31. 31.
    Scalafani A, Hermann JM (1998) Influence of metallic silver and of platinum–silver bimetallic deposits on the photocatalytic activity of Titania (anatase and rutile) in organic and aqueous media. J Photochem Photobiol A 113:181–188. doi: 10.1016/s1010-6030(97)00319-5 CrossRefGoogle Scholar
  32. 32.
    Sahoo C, Gupta AK, Anjali Pal (2005) Photocatalytic degradation of methyl red dye in aqueous solutions under UV irradiation using Ag+ doped TiO2. Desalination 181:91–100. doi: 10.1016/i.desal.2005.02.014 CrossRefGoogle Scholar
  33. 33.
    Ozkan A, Ozkan MH, Gurkan R, Akcay M, Sokmen M (2004) Photocatalytic degradation of textile azo dye, sirius gelb GC on TiO2 or Ag-TiO2 particles in the absence and presence of UV irradiation: the effect of some inorganic anions on the photocatalysis. J Photochem Photobiol A 163:29–35. doi: 10.1016/s1010-6030(03)00426-x CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2013

Authors and Affiliations

  1. 1.Department of ChemistryAnil Neerukonda Institute of Technology and SciencesVisakhapatnamIndia
  2. 2.Department of ChemistryGovernment College (Autonomous)RajahmundryIndia
  3. 3.School of ChemistryAndhra UniversityVisakhapatnamIndia

Personalised recommendations