Characterization of Phenolic Compounds from Parmelia reticulata Tayl

  • Mayurika Goel
  • Hartmut Laatsch
  • Prem Lal UniyalEmail author
Short Communication


Secondary metabolite composition of the bioactive extract fractions of Parmelia reticulata was analyzed using high-performance liquid chromatography coupled with mass spectrometry followed by isolation of metabolites by chromatographic techniques using a polarity gradient. Compounds obtained were characterized using spectroscopy techniques. Structure elucidation of obtained metabolites is discussed (Pr XIIb, Pr XIIIb and Pr XIVb), and 2D NMR (HMBC and HSBC) spectral data of Pr XIV are reported for the very first time.


Bioactivity Secondary metabolites Parmelia reticulata 



  1. 1.
    Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570ADSCrossRefGoogle Scholar
  2. 2.
    Molnar K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch C 65:157173CrossRefGoogle Scholar
  3. 3.
    Müller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9–16CrossRefGoogle Scholar
  4. 4.
    Wörgötter ES (2008) Nat Prod Rep 25:188Google Scholar
  5. 5.
    Elix JA (1996) Biochemistry and secondary metabolites. In: Nash TH III (ed) Lichen biology, 1st edn. Cambridge University Press, Cambridge, p 155Google Scholar
  6. 6.
    Goel M, Sharma PK, Dureja P, Rani A, Uniyal PL (2011) Antifungal activity of extracts of the lichens Parmelia reticulata, Ramalina roesleri, Usnea longissima and Stereocaulon himalayense. Arch Phytopathol Plant Prot 44(13):1300–1311CrossRefGoogle Scholar
  7. 7.
    Goel M, Dureja P, Rani A, Uniyal PL, Laatsch H (2011) Isolation, characterization and antifungal activity of major constituents of the himalayan lichen Parmelia reticulata Tayl. J Agric Food Chem 59(6):2299–2307CrossRefGoogle Scholar
  8. 8.
    Laatsch H (2011) A data base for rapid dereplication and structure determination of microbial natural products; AntiBase. Wiley, WeinheimGoogle Scholar
  9. 9.
    Frank E, Dayan FE, Romangi JG (2001) Lichens as a potential source of pesticides. Pestic Outlook 12:229–232CrossRefGoogle Scholar
  10. 10.
    Zambare VasudeoP, Christopher LewP (2012) Biopharmaceutical potential of lichens. Pharm Biol 50(6):778–798CrossRefGoogle Scholar
  11. 11.
    Gulluce M, Aslan A, Sokmen M, Sahin F, Adiguzel A, Agar G, Sokmen A (2006) Screeningthe antioxidant and antimicrobial properties of the lichens Parmelia saxatilis, Platismatia glauca, Ramalina pollinaria, Ramalina polymorpha and Umbilicaria nylanderiana. Phytomedicine 13:515521CrossRefGoogle Scholar
  12. 12.
    Sisodia R, Goel M, Verma S, Rani A, Dureja P (2013) Antibacterial and antioxidant activity of lichen species Ramalina roesleri Nyl. Nat Prod Res 27:2235–2239CrossRefGoogle Scholar
  13. 13.
    Goel M, Rani A, Dureja P, Uniyal P (2014) Investigation of allelopathic potentiality of the himalayan lichen Parmelia reticulata Tayl. against Phalaris minor retz. APCBEE Proc 9:140–144CrossRefGoogle Scholar
  14. 14.
    Goel M, Singh B (2014) Efficacy of major chemical constituents isolated from Himalayan Lichen Ramalina roesleri Nyl. against soil borne plant pathogenic fungi. Int J Appl Eng Res 10:35Google Scholar

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  • Mayurika Goel
    • 1
  • Hartmut Laatsch
    • 2
  • Prem Lal Uniyal
    • 3
    Email author
  1. 1.Division of Sustainable Agriculture, TERI-Deakin Nanobiotechnology CentreThe Energy and Resources InstituteGurgaonIndia
  2. 2.Institute of Organic and Biomolecular ChemistryUniversity of GöttingenGöttingenGermany
  3. 3.Department of BotanyUniversity of DelhiDelhiIndia

Personalised recommendations