Advertisement

Evaluation of Variation in Cuticular Wax Yield with Season, Solvent, and Species in Calotropis

  • Priyal Sharma
  • Jagdish Prasad
  • S. L. Kothari
  • Vinod S. GourEmail author
Short Communication
  • 5 Downloads

Abstract

Cuticle is the protective layer of aerial parts of plants. The present study investigates the effects of species, season, solvent, size, and side of leaves on cuticular wax yield in Calotropis procera and Calotropis gigantea. Epicuticular wax has been isolated using acetone and chloroform separately. Statistical data revealed that C. procera had a higher cuticular wax yield (0.1573 mg cm−2) than C. gigantea (0.1197 mg cm−2). Season and size of the leaves were observed to significantly influence wax yield in both the species. However, side of leaf does not influence the wax yield in both species.

Keywords

Calotopis procera Calotopis gigantea Cuticular wax Drought Water loss Quantitative variation 

Notes

Acknowledgements

The authors are thankful to Amity University Rajasthan, Jaipur for providing infrastructure facilities to carry out the experiments.

References

  1. 1.
    Riederer M, Schreiber L (2001) Protecting against water loss, analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032CrossRefGoogle Scholar
  2. 2.
    Sharma P, Kothari SL, Rathore M, Gour V (2018) Properties, variations, roles, and potential applications of epicuticular wax: a review. Turk J Bot 42:135–149CrossRefGoogle Scholar
  3. 3.
    Szafranek B, Tomaszewski D, Pokrzywińska K, Gołębiowski M (2008) Microstructure and chemical composition of leaf cuticular waxes in two salix species and their hybrid. Acta Biol Cracov Bot 50(2):49–54Google Scholar
  4. 4.
    Jenks MA, Gaston CH, Goodwin MS, Keith JA, Teusink RS, Wood KV (2002) Seasonal variation in cuticular waxes on Hosta genotypes differing in leaf surface glaucousness. HortScience 37:673–677CrossRefGoogle Scholar
  5. 5.
    Yadav J, Datta M, Gour VS (2014) Developing hydrophobic paper as a packaging material using epicuticular wax: a sustainable approach. BioResources 9:5066–5072CrossRefGoogle Scholar
  6. 6.
    Pattnaik PK, Kar D, Chhatoi H, Shahbazi S, Ghosh G, Kuanar A (2017) Chemometric profile & antimicrobial activities of leaf extract of Calotropis procera and Calotropis gigantea. Nat Prod Res 31:1954–1957CrossRefGoogle Scholar
  7. 7.
    Wang ZN, Wang MY, Mei WL, Han Z, Dai HF (2008) A new cytotoxic pregnanone from Calotropis gigantea. Molecules 13:3033–3039CrossRefGoogle Scholar
  8. 8.
    Subramanian SP, Saratha V (2010) Evaluation of antibacterial activity of Calotropis gigantea latex extract on selected pathogenic bacteria. J Pharm Res 3:517–521Google Scholar
  9. 9.
    Faini F, Labbé C, Coll J (1999) Seasonal changes in chemical composition of epicuticular waxes from the leaves of Baccharis linearis. Biochem Syst Ecol 27:673–679CrossRefGoogle Scholar
  10. 10.
    Mayeux HS, Jordan WR, Meyer RE, Meola SM (1981) Epicuticular wax on goldenweed (Isocoma spp.) leaves, variation with species and season. Weed Sci 29:389–393CrossRefGoogle Scholar
  11. 11.
    Krauss P, Markstädter C, Riederer M (1997) Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ 20:1079–1085CrossRefGoogle Scholar
  12. 12.
    Bringe K, Schumacher CF, Schmitz-Eiberger M, Steiner U, Oerke EC (2006) Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces. Phytochemistry 67:161–170CrossRefGoogle Scholar
  13. 13.
    Celano G, D’Auria M, Xiloyannis C, Mauriello G, Baldassarre M (2006) Composition and seasonal variation of soluble cuticular waxes in Actinidia deliciosa leaves. Nat Prod Res 20:701–709CrossRefGoogle Scholar
  14. 14.
    Tsubaki S, Sakumoto S, Uemura N, Azuma JI (2013) Compositional analysis of leaf cuticular membranes isolated from tea plants (Camellia sinensis L.). Food Chem 138:286–290CrossRefGoogle Scholar
  15. 15.
    Dragota S, Riederer M (2007) Epicuticular wax crystals of Wollemia nobilis: morphology and chemical composition. Ann Bot Lond 100:225–231CrossRefGoogle Scholar
  16. 16.
    Maiti R, Rodriguez HG, Gonzalez EA, Kumari A, Sarkar NC (2016) Variability in epicuticular wax in 35 woody plants in Linares Northeast Mexico. For Res 5:162Google Scholar

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  1. 1.Amity Institute of BiotechnologyAmity University RajasthanJaipurIndia
  2. 2.Amity School of Applied SciencesAmity University RajasthanJaipurIndia

Personalised recommendations