Advertisement

An Atoms-in-Molecules Theory Interpretation for the Structure of Di-n-Butyltin(IV) Derivative of Glycylvaline

  • Sandeep PokhariaEmail author
  • Swatantra Kumar Yadav
  • Hirdyesh Mishra
Short Communication
  • 6 Downloads

Abstract

The topological and energetic properties of the electron density distribution ρ\( (\vec{r}) \) for the tin–ligand interaction in n-Bu2SnL, the geometric configuration of which was optimized at B3LYP/6-31G(d,p)/LANL2DZ(Sn) level of theory, have been theoretically calculated at the bonds around the central Sn atom in terms of atoms-in-molecules (AIM) theory using AIMAll (Version 16.01.09, standard). In n-Bu2SnL, the formation of a (3, − 1) critical point in the internuclear region between tin atom and bonded/coordinated atoms provided an evidence of a bonding interatomic interaction, and calculated bond path angles indicated a distorted trigonal bipyramidal geometry. The calculated topological and energetic parameters suggested a weak closed-shell interaction in all the bonded/coordinated bonds to Sn atom. This interaction possessed covalent character in Sn–Npeptide, Sn–Cα and Sn–Cα′, whereas an electrostatic interaction was observed in Sn–Namino and Sn–Ocarboxyl bonds. The calculated atomic charges suggested negatively charged centers around the central Sn atom.

Keywords

AIM DFT Di-n-butyltin(IV) Glycylvaline 

Notes

Acknowledgements

The authors are thankful to Banaras Hindu University, Varanasi, for providing necessary infrastructural and computational facilities.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Nath M (2008) Toxicity and the cardiovascular activity of organotin compounds: a review. Appl Organometal Chem 22:598–612CrossRefGoogle Scholar
  2. 2.
    Pellerito L, Nagy L (2002) Organotin(IV)n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coord Chem Rev 224:111–150CrossRefGoogle Scholar
  3. 3.
    Katsoulakou E, Tiliakos M, Papaefstathiou G, Terzis A, Raptopoulou C, Geromichalos G, Papazisis K, Papi R, Pantazaki A, Kyriakidis D, Cordopatis P, Manessi-Zoupa E (2008) Diorganotin(IV) complexes of dipeptides containing the α-aminoisobutyryl residue (Aib): preparation, structural characterization, antibacterial and antiproliferative activities of [(n-Bu)2Sn(H-1L)] (LH = H-Aib-L-Leu-OH, H-Aib-L-Ala-OH). J Inorg Biochem 102:1397–1405CrossRefGoogle Scholar
  4. 4.
    Nath M, Singh H, Kumar P, Kumar A, Song X, Eng G (2009) Organotin(IV) tryptophanylglycinates: potential non-steroidal anti-inflammatory agents; crystal structure of dibutyltin(IV) tryptophanylglycinate. Appl Organometal Chem 23:347–358CrossRefGoogle Scholar
  5. 5.
    Girasolo MA, Rubino S, Portanova P, Calvaruso G, Ruisi G, Stocco G (2010) New organotin(IV) complexes with l-arginine, Nα-t-Boc-l-arginine and l-alanyl-l-arginine: synthesis, structural investigations and cytotoxic activity. J Organomet Chem 695:609–618CrossRefGoogle Scholar
  6. 6.
    Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928CrossRefGoogle Scholar
  7. 7.
    Karlov SS, Tyurin DA, Zabalov MV, Churakov AV, Zaitseva GS (2005) Quantum chemical study of group 14 elements pentacoordinated derivatives-metallatranes. J Mol Struct 724:31–37CrossRefGoogle Scholar
  8. 8.
    Naseh M, Sedagat T, Tarassoli A, Shakerzadeh E (2013) DFT studies of ONO Schiff bases, their anions and diorganotin(IV) complexes: tautomerism, NBO and AIM analysis. Comput Theor Chem 1005:53–57CrossRefGoogle Scholar
  9. 9.
    Korlyukov AA, Lyssenko KA, Baukov YI, Bylikin SY (2013) Chemical bonding in 1-(chlorodimethylstannylmethyl)-2-piperidone and its Si and Ge analogues. General trends and O → M (M = Si, Ge, Sn) coordination bond energy. J Mol Struct 1051:49–55ADSCrossRefGoogle Scholar
  10. 10.
    Matczak P (2015) Theoretical investigation of the N → Sn coordination in (Me3SnCN)2. Struct Chem 26:301–318.  https://doi.org/10.1007/s11224-014-0485-4 CrossRefGoogle Scholar
  11. 11.
    Mundus-Glowacki B, Huber F, Preut H, Ruisi G, Barbieri R (1992) Synthesis and spectroscopic characterization of dimethyl-, di-n-butyl, di-t-butyl- and diphenyl-tin(IV) derivatives of dipeptides: crystal and molecular structure of di-n-butyltin(IV)glycylvalinate. Appl Organometal Chem 6:83–94CrossRefGoogle Scholar
  12. 12.
    AIMAll (Version16.01.09, standard) Keith TA (2016) TK Gristmill software, Overland Park KS, USA. http://aim.tkgristmill.com
  13. 13.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian09, revision B.01. Gaussian, Inc., WallingfordGoogle Scholar
  14. 14.
    Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem 102:7314–7323CrossRefGoogle Scholar
  15. 15.
    Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H···F–Y systems. J Chem Phys 117:5529–5542.  https://doi.org/10.1063/1.1501133 ADSCrossRefGoogle Scholar
  16. 16.
    Nazari F, Doroodi Z (2010) The substitution effect on heavy versions of cyclobutadiene. Int J Quantum Chem 110:1514–1528Google Scholar

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  • Sandeep Pokharia
    • 1
    Email author
  • Swatantra Kumar Yadav
    • 2
  • Hirdyesh Mishra
    • 2
  1. 1.Organometallics and Molecular Modeling Group, Chemistry Section, M.M.V.Banaras Hindu UniversityVaranasiIndia
  2. 2.Physics Section, M.M.V.Banaras Hindu UniversityVaranasiIndia

Personalised recommendations