Advertisement

National Academy Science Letters

, Volume 41, Issue 4, pp 255–258 | Cite as

Electron Paramagnetic Resonance Studies of Vanadyl Doped K1.98 (NH4)0.02(C2O4)2.H2O System

  • Navin Pant
  • A. L. Verma
  • S. D. Pandey
  • Ram Kripal
Short Communication
  • 29 Downloads

Abstract

The vanadyl doped K1.98 (NH4)0.02(C2O4)2.H2O system is studied at room temperature using Electron Paramagnetic Resonance (EPR) technique. Two distinct interstitial sites for vanadyl ion are found in the potassium oxalate monohydrate crystal grown with 1% ammonium oxalate monohydrate salt. This is confirmed from angular variation of EPR spectra with static magnetic field H in the ac crystal plane. The ammonium ions seem to act as catalyst for vanadyl ions to occupy otherwise more difficult two interstitial sites in the mixed system. The formation of VO [(C2O4)4.H2O] complex is envisaged in our system and relevant ‘g’ and ‘A’ parameters are obtained through EPR studies.

Keywords

EPR Potassium oxalate monohydrate Vanadyl ion Mixed oxalate system 

Notes

Acknowledgements

The authors are thankful to Dr. R P Pant of NPL, New Delhi for his help in EPR work.

References

  1. 1.
    Siegel H (ed) (1974) Metal ions in biological systems, vol 1. Marcel Dekker Inc., New YorkGoogle Scholar
  2. 2.
    Raju BDP, Narasimhulu KV, Gopal NO, Rao JL (2003) EPR and optical absorption studies on VO2+ ions in KZnClSO4.3H2O single crystals–an observation of super hyperfine structure. J Phys Chem Solids 64:1339–1347CrossRefGoogle Scholar
  3. 3.
    Chand P, Jain VK, Upreti GC (1988) EPR of VO2+ molecular ion. Mag Reson Rev 14:49–62Google Scholar
  4. 4.
    Satyanarayana N, Radhakrishna S (1985) EPR and electronic absorption studies of vanadyl ion in the Cd(NH4)2 (SO4)2.6H2O single crystals. J Chem Phys 84:529–534ADSCrossRefGoogle Scholar
  5. 5.
    Dinnebier RE, Vensky S, Panthofer M, Jansen M (2003) crystals and molecular structure of alkali oxalates: first proof of a staggered oxalate anion in solid state. Inorg Chem 42:1499–1507CrossRefPubMedGoogle Scholar
  6. 6.
    Hendricks SB, Jefferson ME (1936) electron distribution in (NH4)2C2O4.H2O and the structure of oxalate group. J Chem Phys 4:102–108ADSCrossRefGoogle Scholar
  7. 7.
    Jain VK (1980) EPR of Mn2+ and VO2+ in K2C2O4.H2O single crystals. Phys Status Solidi b 97:337–344ADSCrossRefGoogle Scholar
  8. 8.
    Ram Kripal, Manju Maurya, Har Govind (2007) EPR and optical absorption studies in potassium oxalate monohydrate. Phys B 392:281–287CrossRefGoogle Scholar
  9. 9.
    Jain VK, Venkateswarlu P (1980) electron paramagnetic resonance of VO2+ in hydrated crystals. J Chem Phys 73:30ADSCrossRefGoogle Scholar
  10. 10.
    Ballhausen CJ (1962) Introduction to ligand field theory. Mc Graw Hill, New YorkMATHGoogle Scholar
  11. 11.
    Hodgson DJ, Ibers JA (1969) Refinement of the crystal and molecular structure of potassium oxalate monohydrate. Acta Crystallogr B 25:469–477CrossRefGoogle Scholar
  12. 12.
    Robertson JH (1965) Ammonium oxalate monohydrate: structure refinement at 30K. Acta Crystallogr 18:410–417CrossRefGoogle Scholar
  13. 13.
    Pake GE (2012) Paramagnetic resonance. Literary licensing, LLC, WhitefishGoogle Scholar
  14. 14.
    Jain VK, Seth VP, Malhotra RK (1984) Electron paramagnetic resonance of vanadyl ion impurities in crystalline solids. J Phys Chem Solids 45:529–545ADSCrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  • Navin Pant
    • 1
  • A. L. Verma
    • 1
  • S. D. Pandey
    • 2
  • Ram Kripal
    • 3
  1. 1.Department of Applied Physics, Amity Institute of Applied SciencesAmity UniversityNoidaIndia
  2. 2.P.P.N. College P.G. CenterKanpur UniversityKanpurIndia
  3. 3.Department of PhysicsUniversity of AllahabadAllahabadIndia

Personalised recommendations