Boron nitride nanotube-CREKA peptide as an effective target system to metastatic breast cancer

  • Tiago Hilário FerreiraEmail author
  • Luiza Baptista de Oliveira Freitas
  • Renata Salgado Fernandes
  • Virgílio Mateus dos Santos
  • Jarbas Magalhães Resende
  • Valbert Nascimento Cardoso
  • André Luís Branco de Barros
  • Edésia Martins Barros de SousaEmail author
Original Article



The development of nanomaterials that are capable of recognizing disease-specific biomarkers with high sensitivity and specificity is related to several advances in the field of nanomedicine. Furthermore, the targeted delivery of anticancer agents to tumor tissues enhances their efficiency and reduces their toxic side effects. Boron nitride nanotubes (BNNTs) are nanostructured materials, analog to carbon nanotubes, which present good biocompatibility and morphology suitable for tumor cell internalization. CREKA is a pentapeptide that has a high affinity to fibrin, a protein found in the new tumor vessels in the early stages of metastasis and in thrombosis regions.


In this study BNNTs were chemically functionalized with the peptide CREKA, and this system was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), zeta potential, scanning electron microscopy, and transmission electron microscopy.


After the mentioned chemical steps, the FTIR analysis shows an organic phase related to the CREKA, TGA indicates that about 10% of the peptide is firmly attached to BNNT surface. In addition, the radiolabeling process was successful, achieving the purity required for the biodistribution study. In vivo experiments showed that a considerable amount of BNNT-CREKA was accumulated at the tumor and metastasis sites.


The present results indicate an effective targeting of the system to tumor and metastasis sites. Further studies can reveal potential applications of functionalized BNNTs in cancer treatment.


BNNT CREKA peptide 99mTc Nanomedicine Active target In vivo assay Metastasis 



The authors would like to thank FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for all financial support. ALBB, EMBS, JMR, LBF, THF and VNC acknowledge grants from CNPq. RSF and VMS acknowledge grants from CAPES. Experiments and analyses involving electron microscopy were performed in the Center of Microscopy at the Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil (

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of Human and Animal Rights

The research was conducted in accordance with the ethical standards.

Ethical Approval and Informed Consent

All animal experimental protocols were approved by the Ethics Committee for Animal Experiments (CEUA) from Federal University of Minas Gerais under the protocol number 284/17 and comply with the requirements of the guide for the care and use of laboratory animals.


  1. Agemy L, Sugahara KN, Kotamraju VR et al (2010) Nanoparticle-induced vascular blockade in human prostate cancer. Blood 116:2847–2856. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andrade GF, Soares DCF, dos Santos RG, Sousa EMB (2013) Mesoporous silica SBA-16 nanoparticles: synthesis, physicochemical characterization, release profile, and in vitro cytocompatibility studies. Microporous Mesoporous Mater 168:102–110. CrossRefGoogle Scholar
  3. Bolfarini GC, Siqueira-Moura MP, Demets GJF et al (2012) In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbit. J Photochem Photobiol B 115:1–4. CrossRefPubMedGoogle Scholar
  4. Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5:497–508. CrossRefPubMedGoogle Scholar
  5. Burstein HJ, Krilov L, Aragon-Ching JB et al (2017) Clinical cancer advances 2017: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol 35:1341–1367. CrossRefPubMedGoogle Scholar
  6. Chan WC, White PD (2000) Fmoc solid phase peptide synthesisGoogle Scholar
  7. Chen X, Wu P, Rousseas M et al (2009) Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 131:890–891. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cherukuri P, Glazer ES, Curley SA (2010) Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 62:339–345. CrossRefPubMedGoogle Scholar
  9. Chung EJ, Cheng Y, Morshed R et al (2014) Fibrin-binding, peptide amphiphile micelles for targeting glioblastoma. Biomaterials 35:1249–1256. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ciofani G, Raffa V, Menciassi A, Cuschieri A (2008a) Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol Bioeng 101:850–858. CrossRefPubMedGoogle Scholar
  11. Ciofani G, Raffa V, Menciassi A, Cuschieri A (2008b) Folate functionalized boron nitride nanotubes and their selective uptake by glioblastoma multiforme cells: implications for their use as boron carriers in clinical boron neutron capture therapy. Nanoscale Res Lett 4:113–121. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ciofani G, Raffa V, Menciassi A, Cuschieri A (2009) Boron nitride nanotubes: an innovative tool for nanomedicine. Vitro. CrossRefGoogle Scholar
  13. Ciofani G, Danti S, Genchi GG et al (2012a) Pilot in vivo toxicological investigation of boron nitride nanotubes. Int J Nanomedicine 7:19–24. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ciofani G, Genchi GG, Liakos I et al (2012b) A simple approach to covalent functionalization of boron nitride nanotubes. J Colloid Interface Sci 374:308–314. CrossRefPubMedGoogle Scholar
  15. Ciofani G, Danti S, Genchi GG et al (2013) Boron nitride nanotubes: biocompatibility and potential spill-over in nanomedicine. Small. CrossRefPubMedGoogle Scholar
  16. Coderre JA, Morris GM (1999) The radiation biology of boron neutron capture therapy. Radiat Res 151:1–18CrossRefGoogle Scholar
  17. de Oliveira Freitas LB, de Melo Corgosinho L, Faria JAQA et al (2017) Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging. Microporous Mesoporous Mater 242:271–283. CrossRefGoogle Scholar
  18. de Oliveira SJ, Fernandes RS, Ramos Oda CM et al (2019) Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed Pharmacother 118:109323. CrossRefPubMedGoogle Scholar
  19. Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8:2101–2141. CrossRefPubMedGoogle Scholar
  20. DuPré SA, Redelman D, Hunter KW Jr (2007) The mouse mammary carcinoma 4T1: characterization of the cellular landscape of primary tumours and metastatic tumour foci. Int J Exp Pathol 88:351–360. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dvorak HF, Senger DR, Dvorak AM et al (1985) Regulation of extravascular coagulation by microvascular permeability. Science 227:1059–1061. CrossRefPubMedGoogle Scholar
  22. Fernandes RS, Silva JO, Mussi SV et al (2018) Nanostructured lipid carrier Co-loaded with doxorubicin and docosahexaenoic acid as a theranostic agent: evaluation of biodistribution and antitumor activity in experimental model. Mol Imaging Biol 20:437–447. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ferreira TH, Silva PRO, Santos RG, Sousa EB (2011) A novel synthesis route to produce boron nitride nanotubes for bioapplications. J Biomater Nanobiotechnol 02:426–434. CrossRefGoogle Scholar
  24. Ferreira TH, Soares DCF, Moreira LMC et al (2013) Boron nitride nanotubes coated with organic hydrophilic agents: stability and cytocompatibility studies. Mater Sci Eng C 33:4616–4623. CrossRefGoogle Scholar
  25. Ferreira TH, Hollanda LM, Lancellotti M, de Sousa EMB (2014) Boron nitride nanotubes chemically functionalized with glycol chitosan for gene transfection in eukaryotic cell lines. J Biomed Mater Res Part A 103:2176–2185. CrossRefGoogle Scholar
  26. Ferreira TH, Marino A, Rocca A et al (2015a) Folate-grafted boron nitride nanotubes: possible exploitation in cancer therapy. Int J Pharm 481:56–63. CrossRefPubMedGoogle Scholar
  27. Ferreira TH, Rocca A, Marino A et al (2015b) Evaluation of the effects of boron nitride nanotubes functionalized with gum arabic on the differentiation of rat mesenchymal stem cells. RSC Adv 5:45431–45438. CrossRefGoogle Scholar
  28. Ferreira T, Miranda M, Rocha Z et al (2017) An Assessment of the potential use of BNNTs for boron neutron capture therapy. Nanomaterials 7:82. CrossRefPubMedCentralGoogle Scholar
  29. Ferreira TH, Faria JAQA, Gonzalez IJ et al (2018) BNNT/Fe3O4 system as an efficient tool for magnetohyperthermia therapy. J Nanosci Nanotechnol 18:6746–6755. CrossRefPubMedGoogle Scholar
  30. Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Hematoxylin and eosin staining of tissueand cell sections. Cold Spring Harb Protoc. CrossRefGoogle Scholar
  31. Golberg D, Bando Y, Tang CC, Zhi CY (2007) Boron nitride nanotubes. Adv Mater 19:2413–2432. CrossRefGoogle Scholar
  32. Hu C-M, Zhang L (2009) Therapeutic nanoparticles to combat cancer drug resistance. Curr Drug Metab 10:836–841. CrossRefPubMedGoogle Scholar
  33. Karmali PP, Kotamraju VR, Kastantin M et al (2009) Targeting of albumin-embedded paclitaxel nanoparticles to tumors. Nanomed Nanotechnol Biol Med 5:73–82. CrossRefGoogle Scholar
  34. Kim EJ, Choi MR, Park H et al (2011) Dietary fat increases solid tumor growth and metastasis of 4T1 murine mammary carcinoma cells and mortality in obesity-resistant BALB/c mice. Breast Cancer Res. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kodali VK, Roberts JR, Shoeb M et al (2017) Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture. Nanotoxicology 11:1040–1058. CrossRefPubMedGoogle Scholar
  36. Kruse AM, Meenach SA, Anderson KW, Hilt JZ (2014) Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications. Acta Biomater 10:2622–2629. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Li X, Hanagata N, Wang X et al (2014) Multimodal luminescent-magnetic boron nitride nanotubes@NaGdF4:Eu structures for cancer therapy. Chem Commun 50:4371–4374. CrossRefGoogle Scholar
  38. Lim E-K, Kim T, Paik S et al (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115:327–394. CrossRefPubMedGoogle Scholar
  39. Lucky SS, Idris NM, Huang K et al (2016) In vivo biocompatibility, biodistribution and therapeutic efficiency of titania coated upconversion nanoparticles for photodynamic therapy of solid oral cancers. Theranostics 6:1844–1865. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Monteiro LOF, Fernandes RS, Castro LC et al (2017) Technetium-99m radiolabeled paclitaxel as an imaging probe for breast cancer in vivo. Biomed Pharmacother 89:146–151. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Okur AC, Erkoc P, Kizilel S (2016) Targeting cancer cells via tumor-homing peptide CREKA functional PEG nanoparticles. Colloids Surf B 147:191–200. CrossRefGoogle Scholar
  42. Pang J, Zhao L, Zhang L et al (2013) Folate-conjugated hybrid SBA-15 particles for targeted anticancer drug delivery. J Colloid Interface 395:31–39CrossRefGoogle Scholar
  43. Park JH, Von Maltzahn G, Zhang L et al (2009) Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 5:694–700. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rocca A, Marino A, Del Turco S et al (2016) Pectin-coated boron nitride nanotubes: in vitro cyto-/immune-compatibility on RAW 264.7 macrophages. Biochim Biophys Acta 1860:775–784. CrossRefPubMedGoogle Scholar
  45. Salvetti A, Rossi L, Iacopetti P et al (2015) In vivo biocompatibility of boron nitride nanotubes: effects on stem cell biology and tissue regeneration in planarians. Nanomedicine 10:1911–1922. CrossRefPubMedGoogle Scholar
  46. Shin SJ, Beech JR, Kelly KA (2013) Targeted nanoparticles in imaging: paving the way for personalized medicine in the battle against cancer. Integr Biol 5:29–42. CrossRefGoogle Scholar
  47. Simberg D, Duza T, Park JH et al (2007) Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci USA 104:932–936. CrossRefPubMedGoogle Scholar
  48. Soares DCF, Ferreira TH, Ferreira CDA et al (2011) Boron nitride nanotubes radiolabeled with (99m)Tc: preparation, physicochemical characterization, biodistribution study, and scintigraphic imaging in Swiss mice. Int J Pharm. CrossRefPubMedGoogle Scholar
  49. Song Y, Huang Z, Xu J et al (2014) Multimodal SPION-CREKA peptide based agents for molecular imaging of microthrombus in a rat myocardial ischemia-reperfusion model. Biomaterials 35:2961–2970. CrossRefPubMedGoogle Scholar
  50. Sun X, Gao D, Gao L et al (2015) Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer. Theranostics 5:597–608. CrossRefPubMedPubMedCentralGoogle Scholar
  51. van der Meel R, Vehmeijer LJC, Kok RJ et al (2013) Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv Drug Deliv Rev 65:1284–1298. CrossRefPubMedGoogle Scholar
  52. Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–198. CrossRefPubMedGoogle Scholar
  53. Wang C, Wang X, Zhong T et al (2015) The antitumor activity of tumor-homing peptide-modified thermosensitive liposomes containing doxorubicin on MCF-7/ADR: in vitro and in vivo. Int J Nanomed 10:2229–2248. CrossRefGoogle Scholar
  54. Wen AM, Wang Y, Jiang K et al (2015) Shaping bio-inspired nanotechnologies to target thrombosis for dual optical-magnetic resonance imaging. J Mater Chem B 3:6037–6045. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157. CrossRefPubMedGoogle Scholar
  56. Yao X, Niu X, Ma K et al (2017) Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yinghuai Z, Hosmane NS (2013) Applications and perspectives of boron-enriched nanocomposites in cancer therapy. Future Med Chem 5:705–714. CrossRefPubMedGoogle Scholar
  58. Zhang B, Wang H, Shen S et al (2016) Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor. Biomaterials 79:46–55. CrossRefPubMedGoogle Scholar
  59. Zhao J, Zhang B, Shen S et al (2015) CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. J Colloid Interface Sci 450:396–403. CrossRefPubMedGoogle Scholar
  60. Zhou Z, Wu X, Kresak A et al (2013) Peptide targeted tripod macrocyclic Gd(III) chelates for cancer molecular MRI. Biomaterials 34:7683–7693. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhou Z, Qutaish M, Han Z et al (2015) MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent. Nat Commun 6:7984. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2019

Authors and Affiliations

  • Tiago Hilário Ferreira
    • 1
    • 2
    Email author
  • Luiza Baptista de Oliveira Freitas
    • 1
  • Renata Salgado Fernandes
    • 2
  • Virgílio Mateus dos Santos
    • 3
  • Jarbas Magalhães Resende
    • 3
  • Valbert Nascimento Cardoso
    • 2
  • André Luís Branco de Barros
    • 2
  • Edésia Martins Barros de Sousa
    • 1
    Email author
  1. 1.SENANComissão Nacional de Energia Nuclear – Centro de Desenvolvimento da Tecnologia Nuclear – (CNEN/CDTN)Belo HorizonteBrazil
  2. 2.Faculdade de FarmáciaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Departamento de Química, Instituto de Ciências ExatasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations