Long acting injectable formulations: the state of the arts and challenges of poly(lactic-co-glycolic acid) microsphere, hydrogel, organogel and liquid crystal

  • Won Young Lee
  • Md. Asadujjaman
  • Jun-Pil JeeEmail author



Long-acting injectable formulations (LAIFs) have received substantial attention recently due to their advantages over conventional formulations, including easy administration, continuous and controlled release of drug over months, and the ability to maintain drug concentrations within the therapeutic range. The constant advances in biotechnology produce complex active pharmaceuticals that might be difficult to administer by conventional means. In particular, peptides, proteins, and antibodies are hard to administer orally given their physicochemical instability in the gastrointestinal tract and short half lives in blood. Therefore, LAIFs are a good candidate delivery system for such drugs. LAIFs reduce the frequency of application and improve patient compliance. For instance, LAIF-based antipsychotics can be more effective in patients with bipolar disorder and schizoaffective disorder.

Area covered

This review provides an overview of the various drug delivery technologies using LAIFs. Poly (lactic-co-glycolic acid) microspheres, hydrogels, organogels, and liquid crystals were chosen as representative LAIFs, and their preparation methods, advantages, limitations, challenges, and prospects are discussed.

Expert opinion

LAIFs are an attractive delivery system for bio-macromolecules that might participate in the new drug paradigm in the future. While each LAIF-based delivery technology has its own unique advantages, there are still some limitations that need to be overcome, and studies are being performed to understand and address these limitations.


Poly (lactic-co-glycolic acid) Microsphere Hydrogel Organogel Liquid crystal Long acting injection 



This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07045240).

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest in this work.

Statement of human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. Al-Maaieh A, Flanagan DR (2001) Salt and cosolvent effects on ionic drug loading into microspheres using an O/W method. J Control Release 70:169–181CrossRefPubMedGoogle Scholar
  2. Alonso-Sande M, des Rieux A, Fievez V, Sarmento B, Delgado A, Evora C, Remunan-Lopez C, Preat V, Alonso MJ (2013) Development of PLGA-mannosamine nanoparticles as oral protein carriers. Biomacromol 14:4046–4052CrossRefGoogle Scholar
  3. Andhariya JV, Choi S, Wang Y, Zhou Y, Burgess DJ, Shen J (2017) Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres. Int J Pharm 520:79–85CrossRefPubMedGoogle Scholar
  4. Ashton RS, Banerjee A, Punyani S, Schaffer DV, Kane RS (2007) Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials 28:5518–5525CrossRefPubMedGoogle Scholar
  5. Barauskas J, Landh T (2003) Phase behavior of the phytantriol/water system. Langmuir 19(23):9562–9565CrossRefGoogle Scholar
  6. Bee SL, Hamid AZA, Mariatti M, Yahaya BH, Keemi Lim, Bee ST, Sin ST (2018) Approaches to improve therapeutic efficacy of biodegradable PLA/PLGA microspheres: a review. Polym Rev 58(3):495–536CrossRefGoogle Scholar
  7. Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57:35–52CrossRefPubMedGoogle Scholar
  8. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99CrossRefPubMedGoogle Scholar
  9. Binder WH, Sachsenhofer R (2007) ’Click’ chemistry in polymer and materials science. Macromol Rapid Commun 28:15–54CrossRefGoogle Scholar
  10. Chaw CS, Yang YY, Lim IJ, Phan TT (2003) Water-soluble betamethasone-loaded poly(lactide-co-glycolide) hollow microparticles as a sustained release dosage form. J Microencapsul 20:349–359CrossRefPubMedGoogle Scholar
  11. Chou AI, Akintoye SO, Nicoll SB (2009) Photo-crosslinked alginate hydro-gels support enhanced matrix accumulation by nucleus pulposuscells in vivo. Osteoarthr Cartil 17:1377–1384CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chue P (2010) Risperidone long-acting injection. In: Haddad P, Lambert T, Lauriello J (eds) Antipsychotic long-acting injections. Oxford University Press, Oxford, pp 93–130CrossRefGoogle Scholar
  13. Chue P, Chue J (2012) A review of Olanzapine pamoate. Expert Opin Pharmacother 13:1661–1670CrossRefPubMedGoogle Scholar
  14. Chun C, Lee SM, Kim SY, Yang HK, Song SC (2009) Thermosensitive poly (organophosphazene)-paclitaxel conjugate gels for antitumor applications. Biomaterials 30:2349–2360CrossRefPubMedGoogle Scholar
  15. Clogston J, Caffrey M (2005) Controlling release from the lipidic cubic phase. Amino acids, peptides, proteins and nucleic acids. J Control Release 107:97–111CrossRefPubMedGoogle Scholar
  16. Cohen S, Lobel E, Trevgoda A, Peled Y (1997) A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye. J Control Release 44:201–208CrossRefGoogle Scholar
  17. Correia DM, Sencadas V, Ribeiro C, Martins PM, Martins P, Gama FM, Botelho G, Lanceros-Mendez S (2016) Processing and size range separation of pristine and magnetic poly (l-lactic acid) based microspheres for biomedical applications. J Colloid Interface Sci 476:79–86CrossRefPubMedGoogle Scholar
  18. Correll CU, Citrome L, Haddad PM, Lauriello J, Olfson M, Calloway SM, Kane JM (2016) The use of long-acting injectable antipsychotics in schizophrenia: evaluating the evidence. J Clin Psychiatry 77:1–24CrossRefPubMedGoogle Scholar
  19. da Silva AA Jr, de Matos JR, Formariz TP, Rossanezi G, Scarpa MV, do Egito ES, de Oliveira AG (2009) Thermal behavior and stability of biodegradable spray-dried microparticles containing triamcinolone. Int J Pharm 368:45–55CrossRefPubMedGoogle Scholar
  20. Dasgupta D, Srinivasan S, Rochas C, Ajayaghosh A, Guenet JM (2009) Hybrid thermoreversible gels from covalent polymers and organogels. Langmuir 25(15):8593–8598CrossRefPubMedGoogle Scholar
  21. D’Aurizio E, van Nostrum CF, van Steenbergen MJ, Sozio P, Siepmann F, Siepmann J, Hennink WE, Di Stefano A (2011) Preparation and characterization of poly(lactic-coglycolic acid) microspheres loaded with a labile antiparkinson prodrug. Int J Pharm 409:289–296CrossRefPubMedGoogle Scholar
  22. Dean RL (2005) The preclinical development of Medisorb® Naltrexone, a once a month long-acting injection, for the treatment of alcohol dependence. Front Biosci 10:643–655CrossRefPubMedGoogle Scholar
  23. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R (1999) Transdermal photopolymerization for minimally invasive implantation. Proc Natl Acad Sci USA 96:3104–3107CrossRefPubMedGoogle Scholar
  24. Engstrom S (1990) Drug delivery from cubic and other lipid–water phases. Lipid Technol 2:42–45Google Scholar
  25. Ericsson B, Eriksson PO, Lofroth JE, Engstrom S (1991) Cubic phases as delivery systems for peptide drugs. ACS Sym Ser 469:251–265CrossRefGoogle Scholar
  26. Esposito CL, Kirilov P, Roullin VG (2018) Organogels, promising drug delivery systems: an update of state-of-the-art and recent applications. J Control Release 271:1–20CrossRefPubMedGoogle Scholar
  27. Fakhari A, Phan Q, Berkland C (2014) Hyaluronic acid colloidal gels as self-assembling elastic biomaterials. J Biomed Mater Res B Appl Biomater 102:612–618CrossRefPubMedGoogle Scholar
  28. Fong C, Wells D, Krodkiewska I, Booth J, Hartley PG (2007) Synthesis and mesophases of glycerate surfactants. J Phys Chem B 111(6):1384–1392CrossRefPubMedGoogle Scholar
  29. Fong WK, Hanley T, Boyd BJ (2009) Stimuli responsive liquid crystals provide ‘on-demand’ drug delivery in vitro and in vivo. J Control Release 135:218–226CrossRefPubMedGoogle Scholar
  30. Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems: a review. Int J Pharm 415:34–52CrossRefPubMedGoogle Scholar
  31. Freiberg S, Zhu X (2004) Polymer microspheres for controlled drug release. Int J Pharm 282:1–18CrossRefPubMedGoogle Scholar
  32. Gaignaux A, Reeff J, Siepmann F, Siepmann J, De Vriese C, Goole J, Amighi K (2012) Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int J Pharm 437:20–28CrossRefPubMedGoogle Scholar
  33. Galeska I, Kim TK, Patil SD, Bhardwaj U, Chatttopadhyay D, Papadimitrakopoulos F, Burgess DJ (2005) Controlled release of dexamethasone from PLGA microspheres embedded within polyacid-containing PVA hydrogels. AAPS J7(1):E231–E240CrossRefGoogle Scholar
  34. Garg G, Saraf S, Saraf S (2007) Cubosomes: an overview. Biol Pharm Bull 30(2):350–353CrossRefPubMedGoogle Scholar
  35. Garg T, Bilandi A, Kapoor B, Kumar S, Joshi R (2011) Organogels: advanced and novel drug delivery system. Int Res J Pharm 2(12):15–21Google Scholar
  36. Garner CM, Terech P, Allegraud JJ, Mistrot B, Nguyen P, Geyer A, Rivera D (1998) Thermoreversible gelation of organic liquids by arylcyclohexanol derivatives synthesis and characterisation of the gels. J Chem Soc Faraday Trans 94(15):2173–2179CrossRefGoogle Scholar
  37. Gigante AD, Lafer B, Yatham LN (2012) Long-acting injectable antipsychotics for the maintenance treatment of bipolar disorder. CNS Drugs 26:403–420CrossRefPubMedGoogle Scholar
  38. Gilday E, Nasrallah HA (2012) Clinical pharmacology of paliperidone palmitate a parenteral long-acting formulation for the treatment of schizophrenia. Rev Recent Trials 7:2–9CrossRefGoogle Scholar
  39. Graffino M, Montemagni C, Mingrone C, Rocca P (2014) Long acting injectable antipsychotics in the treatment of schizophrenia: a review of literature. Riv Psichiatr 49:115–123PubMedGoogle Scholar
  40. Grande I, Berk M, Birmaher B, Vieta E (2016) Bipolar disorder. Lancet 387:1561–1572CrossRefPubMedGoogle Scholar
  41. Guo C, Wang J, Cao F, Lee RJ, Zhai G (2010) Lyotropic liquid crystal systems in drug delivery. Drug Discov Today 15(23–24):1032–1040CrossRefPubMedGoogle Scholar
  42. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649CrossRefPubMedGoogle Scholar
  43. Han K, Pan X, Chen M, Wang R, Xu Y, Feng M, Li G, Huang M, Wu C (2010) Phytantriol-based inverted type bicontinuous cubic phase for vascular embolization and drug sustained release. Eur J Pharm Sci 41(5):692–699CrossRefPubMedGoogle Scholar
  44. Han FY, Thurecht KJ, Whittaker AK, Smith MT (2016) Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol 7:185CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hato M, Minamikawa H (1996) The effects of oligosaccharide stereochemistry on the physical properties of aqueous synthetic glycolipids. Langmuir 12(6):1658–1665CrossRefGoogle Scholar
  46. Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36CrossRefPubMedGoogle Scholar
  47. Hines DJ, Kaplan DL (2013) Poly (lactic-co-glycolic) acid controlled-release systems: experimental and modeling insights. Crit Rev Ther Drug Carrier Syst 30:257–276CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hirlekar R, Jain S, Patel M, Garse H, Kadam V (2010) Hexosomes: a novel drug delivery system. Curr Drug Deliv 7(1):28–35CrossRefPubMedGoogle Scholar
  49. Holland TA, Tessmar JK, Tabata Y, Mikos AG (2004) Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J Control Release 94:101–114CrossRefPubMedGoogle Scholar
  50. Huang X, Brazel CS (2003) Analysis of burst release of proxyphylline from poly(vinyl alcohol) hydrogels. Chem Eng Commun 190:519–532CrossRefGoogle Scholar
  51. Jann MW, Penzak SR (2018) Long-acting injectable second-generation antipsychotics: an update and comparison between agents. CNS Drugs 32:241–257CrossRefPubMedGoogle Scholar
  52. Jaraswekin S, Prakongpan S, Bodmeier R (2007) Effect of poly(lactide-co-glycolide) molecular weight on the release of dexamethasone sodium phosphate from microparticles. J Microencapsul 24:117–128CrossRefPubMedGoogle Scholar
  53. Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Release 63:155–163CrossRefPubMedGoogle Scholar
  54. Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54(1):37–51CrossRefPubMedGoogle Scholar
  55. Jia X, Yeo Y, Clifton RJ, Jiao T, Kohane DS, Kobler JB, Zeitels SM, Langer R (2006) Hyaluronic acid-based microgels and microgel networksfor vocal fold regeneration. Biomacromol 7:3336–3344CrossRefGoogle Scholar
  56. Jin R, Hiemstra C, Zhong Z, Feijen J (2007) Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates. Biomaterials 28:2791–2800CrossRefPubMedGoogle Scholar
  57. Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitter-swijk CA, Zhong ZY, Feijen J (2009) Injectable chitosan-based hydrogelsfor cartilage tissue engineering. Biomaterials 30:2544–2551CrossRefPubMedPubMedCentralGoogle Scholar
  58. Jin R, Moreira Teixeira LS, Dijkstra PJ, van Blitterswijk CA, KarperienM Feijen J (2011) Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J Control Release 152:186–195CrossRefPubMedGoogle Scholar
  59. Johnson JA, Lewis DR, Diaz DD, Finn MG, Koberstein JT, Turro NJ (2006) Synthesis of degradable model networks via ATRP and click chemistry. J Am Chem Soc 128:6564–6565CrossRefPubMedGoogle Scholar
  60. Kantaria S, Rees GD, Lawrence MJ (1999) Gelatin-stabilised microemulsion-based organogels: rheology and application in iontophoretic transdermal drug delivery. J Control Release 60(2–3):355–365CrossRefPubMedGoogle Scholar
  61. Kazazi-Hyseni F, Landin M, Lathuile A, Veldhuis GJ, Rahimian S, Hennink WE, Kok RJ, van Nostrum CF (2014) Computer modeling assisted design of monodisperse PLGA microspheres with controlled porosity affords zero order release of an encapsulated macromolecule for 3 months. Pharm Res 31:2844–2856CrossRefPubMedGoogle Scholar
  62. Kempe S, Mäder K (2012) In situ forming implants—an attractive formulation principle for parenteral depot formulations. J Control Release 161:668–679CrossRefPubMedGoogle Scholar
  63. Khan F, Tare RS, Oreffo RO, Bradley M (2009) Versatile biocompatible polymer hydrogels: scaffolds for cell growth. Angew Chem Int Ed Engl 48:978–982CrossRefPubMedGoogle Scholar
  64. Ki MH, Lim JL, Ko JY, Park SH, Kim JE, Cho HJ, Park ES, Kim DD (2014) A new injectable liquid crystal system for 1 month delivery of leuprolide. J Control Release 185:62–70CrossRefPubMedGoogle Scholar
  65. Kim KS, Park SJ, Yang JA, Jeon JH, Bhang SH, Kim BS, Hahn SK (2011) Injectable hyaluronic acid-tyramine hydrogels for the treatment of rheumatoid arthritis. Acta Biomater 7:666–674CrossRefPubMedGoogle Scholar
  66. Kim DH, Jahn A, Cho SJ, Kim JS, Ki MH, Kim DD (2015) Lyotropic liquid crystal systems in drug delivery: a review. J Pharm Investig 45(1):1–11CrossRefGoogle Scholar
  67. Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68:34–45CrossRefGoogle Scholar
  68. Koynova R, Tenchov B, Rapp G (1997) Low amounts of PEG-lipid induce cubic phase in phosphatidylethanolamine dispersions. Biochim Biophys Acta 1326(2):167–170CrossRefPubMedGoogle Scholar
  69. Kulkarni CV (2011) Nanostructural studies on monoelaidin-water systems at low temperatures. Langmuir 27(19):11790–11800CrossRefPubMedGoogle Scholar
  70. Kulkarni CV, Wachter W, Iglesias-Salto G, Engelskirchen S, Ahualli S (2011) Monoolein: a magic lipid? Phys Chem Chem Phys 13(8):3004–3021CrossRefPubMedGoogle Scholar
  71. Kumar R, Katare OP (2005) Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review. AAPS Pharm Sci Tech 6(2):E298–E310CrossRefGoogle Scholar
  72. Kumar S, Haglund BO, Himmelstein KJ (1994) In situ-forming gels for ophthalmic drug delivery. J Ocul Pharmacol 10:47–56CrossRefPubMedGoogle Scholar
  73. Ladet S, David L, Domard A (2008) Multi-membrane hydrogels. Nature 452:76–79CrossRefPubMedGoogle Scholar
  74. Law MR, Soumerai SB, Ross-Degnan D, Adams AS (2008) A longitudinal study of medication nonadherence and hospitalization risk in schizophrenia. J Clin Psychiatry 69:47–53CrossRefPubMedGoogle Scholar
  75. Leach JB, Schmidt CE (2005) Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials 26:125–135CrossRefPubMedGoogle Scholar
  76. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879CrossRefPubMedGoogle Scholar
  77. Lee LY, Ranganath SH, Fu Y, Zheng JL, Lee HS, Wang CH, Smith KA (2009) Paclitaxel release from micro-porous PLGA disks. Chem Eng Sci 64:4341–4349CrossRefGoogle Scholar
  78. Lee BK, Yun Y, Park K (2016) PLA micro-and nano-particles. Adv Drug Deliv Rev 107:176–191CrossRefPubMedPubMedCentralGoogle Scholar
  79. Leslie SB, Puvvada S, Ratna BR, Rudolph AS (1996) Encapsulation of hemoglobin in a bicontinuous cubic phase lipid. Biochim Biophys Acta 1285(2):246–254CrossRefGoogle Scholar
  80. Lim PFC, Liu XY, Kang L, Ho PCL, Chan SY (2008) Physicochemical effects of terpenes on organogel for transdermal drug delivery. Int J Pharm 358(1–2):102–107CrossRefPubMedGoogle Scholar
  81. Lynch ML, Ofori-Boateng A, Hippe A, Kochvar K, Spicer PT (2003) Enhanced loading of water-soluble actives into bicontinuous cubic phase liquid crystals using cationic surfactants. J Colloid Interface Sci 260(2):404–413CrossRefPubMedGoogle Scholar
  82. Ma WJ, Yuan XB, Kang CS, Su T, Yuan XY, Pu PY, Sheng J (2008) Evaluation of blood circulation of polysaccharide surface-decorated PLA nanoparticles. Carbohydr Polym 72:75–81CrossRefGoogle Scholar
  83. Maia J, Ferreira L, Carvalho R, Ramos MA, Gil MH (2005) Synthesis and characterization of new injectable and degradable dextran-based hydrogels. Polymer 46:9604–9614CrossRefGoogle Scholar
  84. Maji SK, Malik S, Drew MG, Nandi AK, Banerjee A (2003) A synthetic tripeptide as a novel organo-gelator: a structural investigation. Tetrahedron Lett 44(21):4103–4107CrossRefGoogle Scholar
  85. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397CrossRefPubMedPubMedCentralGoogle Scholar
  86. Makino K, Nakajima T, Shikamura M, Ito F, Ando S, Kochi C, Inagawa H, Soma G, Terada H (2004) Efficient intracellular delivery of rifampicin to alveolar macrophages using rifampicin-loaded PLGA microspheres: effects of molecular weight and composition of PLGA on release of rifampicin. Colloids Surf B Biointerfaces 36:35–42CrossRefPubMedGoogle Scholar
  87. Malik S, Maji SK, Banerjee A, Nandi AK (2002) A synthetic tripeptide as organogelator: elucidation of gelation mechanism. J Chem Soc, Perkin Trans 2(6):1177–1186CrossRefGoogle Scholar
  88. Malkoch M, Vestberg R, Gupta N, Mespouille L, Dubois P, Mason AF, Hedrick JL, Liao Q, Frank CW, Kingsbury K, Hawker CJ (2006) Synthesis of well-defined hydrogel networks using click chemistry. Chem Commun 26:2774–2776CrossRefGoogle Scholar
  89. Mank R, Rafler G, Nerlich B (1991) Parenterale depotarzneiformen auf der Basis von biologisch abbaubaren Polymeren. Phamazie 46:9–17Google Scholar
  90. Mezzenga R, Schurtenberger P, Burbidge A, Michel M (2005) Understanding foods as soft materials. Nat Mater 4(10):729CrossRefPubMedGoogle Scholar
  91. Milak S, Zimmer A (2015) Glycerol monooleate liquid crystalline phases used in drug delivery systems. Int J Pharm 478(2):569–587CrossRefPubMedGoogle Scholar
  92. Moses JE, Moorhouse AD (2007) The growing applications of click chemistry. Chem Soc Rev 36:1249–1262CrossRefPubMedGoogle Scholar
  93. Motulsky A, Lafleur M, Couffin-Hoarau AC, Hoarau D, Boury F, Benoit JP, Leroux JC (2005) Characterization and biocompatibility of organogels based on l-alanine for parenteral drug delivery implants. Biomaterials 26(31):6242–6253CrossRefGoogle Scholar
  94. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives. J Control Release 125:193–209CrossRefGoogle Scholar
  95. Murdan S, Gregoriadis G, Florence AT (1999a) Sorbitan monostearate/polysorbate 20 organogels containing niosomes: a delivery vehicle for antigens? Eur J Pharm Sci 8(3):177–185CrossRefPubMedGoogle Scholar
  96. Murdan S, Van den Bergh B, Gregoriadis G, Florence AT (1999b) Water-in-sorbitan monostearate organogels (water-in-oil gels). J Pharm Sci 88(6):615–619CrossRefPubMedGoogle Scholar
  97. Murru A, Manchia M, Tusconi M, Carpiniello B, Carpiniello B, Pacchiarotti I, Colom F, Vieta E (2016) Diagnostic reliability in schizoaffective disorder. Bipolar Disord 18:78–80CrossRefPubMedGoogle Scholar
  98. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798CrossRefGoogle Scholar
  99. Nguyen MK, Lee DS (2010) Injectable biodegradable hydrogels. Macromol Biosci 10:563–579CrossRefPubMedGoogle Scholar
  100. Nimmo CM, Shoichet MS (2011) Regenerative biomaterials that “click”:simple, aqueous-based protocols for hydrogel synthesis, surface immobilization, and 3D patterning. Bioconjugate Chem 22:2199–2209CrossRefGoogle Scholar
  101. Nuttelman CR, Tripodi MC, Anseth KS (2006) Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hMSCs. J Biomed Mater Res A 76(1):183–195CrossRefPubMedGoogle Scholar
  102. Ossipov DA, Brannvall K, Forsberg-Nilsson K, Hilborn J (2007) Formationof the first injectable poly(vinyl alcohol) hydrogel by mixing offunctional PVA precursors. J Appl Polym Sci 106:60–70CrossRefGoogle Scholar
  103. Overstreet DJ, Dutta D, Stabenfeldt SE, Vernon BL (2012) Injectable hydrogels. J Polym Sci B Polym Phys 50:881–903CrossRefGoogle Scholar
  104. Pal K, Banthia AK, Majumdar DK (2009) Polymeric hydrogels: characterization and biomedical applications. Des Monomers Polym 12(3):197–220CrossRefGoogle Scholar
  105. Peppas NA, Sahlin JJ (1996) Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials 17:1553–1561CrossRefPubMedGoogle Scholar
  106. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRefPubMedGoogle Scholar
  107. Pereira IHL, Ayres E, Patricio PS, Goes AM, Gomide VS, Junior EP, Orefice RL (2010) Photopolymerizable and injectable polyurethanes for biomedical applications: synthesis and biocompatibility. Acta Biomater 6:3056–3066CrossRefPubMedGoogle Scholar
  108. Perez A, Hernandez R, Velasco D, Voicu D, Mijangos C (2015) Poly (lactic-co-glycolic acid) particles prepared by microfluidics and conventional methods. Modulated particle size and rheology. J Colloid Interface Sci 441:90–97CrossRefPubMedGoogle Scholar
  109. Petersen H, Ahlheimer M (2007) Sustained release formulation comprising octreotide and two or more polylactide-co-glycolide polymers. International Publication WO 2007/071395Google Scholar
  110. Plourde F, Motulsky A, Couffin-Hoarau AC, Hoarau D, Ong H, Leroux JC (2005) First report on the efficacy of l-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs. J Control Release 108(2–3):433–441CrossRefPubMedGoogle Scholar
  111. Qi F, Wu J, Hao D, Yang T, Ren Y, Ma G, Su Z (2014) Comparative studies on the influences of primary emulsion preparation on properties of uniform-sized exenatide-loaded PLGA microspheres. Pharm Res 31:1566–1574CrossRefPubMedGoogle Scholar
  112. Qiu H, Caffrey M (2000) The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials 21(3):223–234CrossRefPubMedGoogle Scholar
  113. Ramazani F, Chen W, van Nostrum CF, Storm G, Kiessling F, Lammers T, Hennink WE, Kok RJ (2016) Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: state-of-the-art and challenges. Int J Pharm 499(1–2):358–367CrossRefPubMedGoogle Scholar
  114. Rememar JF (2014) Making the leap from daily oral dosing to long acting injectables: lessons from the antipsychotics. Mol Pharm 11:1739–1749CrossRefGoogle Scholar
  115. Renard PE, Jordan O, Faes A, Petri-Fink A, Hofmann H, Ruefenacht D, Bosmand F, Buchegger F, Doelker E (2010) The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. Biomaterials 31(4):691–705CrossRefPubMedGoogle Scholar
  116. Rizwan SB, Boyd BJ, Rades T, Hook S (2010) Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins. Expert Opin Drug Deliv 7(10):1133–1144CrossRefPubMedGoogle Scholar
  117. Rizwan SB, McBurney WT, Young K, Hanley T, Boyd BJ, Rades T, Hook S (2013) Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses. J Control Release 165(1):16–21CrossRefPubMedGoogle Scholar
  118. Rosca ID, Watari F, Uo M (2004) Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Release 99:271–280CrossRefPubMedGoogle Scholar
  119. Ruel-Gariepy E, Leroux JC (2004) In situ-forming hydrogels: review of temperature sensitive systems. Eur J Pharm Biopharm 58:409–426CrossRefPubMedGoogle Scholar
  120. Sadhale Y, Shah JC (1999) Biological activity of insulin in GMO gels and the effect of agitation. Int J Pharm 191(1):65–74CrossRefPubMedGoogle Scholar
  121. Sagalowicz L, Mezzenga R, Leser ME (2006) Investigating reversed liquid crystalline mesophases. Curr Opin Colloid Interface Sci 11(4):224–229CrossRefGoogle Scholar
  122. Sahoo S, Kumar N, Bhattacharya C, Sagiri SS, Jain K, Pal K, Ray SS, Nayak B (2012) Organogels: Properties and applications in drug delivery. Des Monomers Polym 14(2):95–108Google Scholar
  123. Salamat-Miller N, Chittchang M, Johnston TP (2005) The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev 57:1666–1691CrossRefPubMedGoogle Scholar
  124. Salzman PM, Raoufina A, Legacy S, Such P, Eramo A (2017) Plasma concentrations and dosing of 2 long-acting injectable formulations of aripiprazole. Neuropsychiatr Dis Treat 13:1125–1129CrossRefPubMedPubMedCentralGoogle Scholar
  125. Schmidt C, Lautenschlaeger C, Collnot EM, Schumann M, Bojarski C, Schulzke JD, Lehr CM, Stallmach A (2013) Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa: a first in vivo study in human patients. J Control Release 165:139–145CrossRefPubMedGoogle Scholar
  126. Seddon JM, Templer RH (1993) Cubic phases of self-assembled amphiphilic aggregates. Philos Trans R Soc Lond 344(1672):377–401CrossRefGoogle Scholar
  127. Seddon JM, Templer RH (1995) Polymorphism of lipid-water systems. Handb Biol Phys 1:97–160CrossRefGoogle Scholar
  128. Shah JC, Sadhale Y, Chilukuri DM (2001) Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev 47(2–3):229–250CrossRefPubMedGoogle Scholar
  129. Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Chu L, Kim J, Fernandez-Nieves A, Martinez CJ, Weitz DA (2008) Designer emulsions using microfluidics. Mater Today 11:18–27CrossRefGoogle Scholar
  130. Shirley M, Perry CM (2014) Aripiprazole (Abilify Maintena): a review of its use as maintenance treatment for adult patients with schizophrenia. Drugs 74:1097–1110CrossRefPubMedGoogle Scholar
  131. Sjölund M, Lindblom G, Rilfors L, Arvidson G (1987) Hydrophobic molecules in lecithin-water systems. I. Formation of reversed hexagonal phases at high and low water contents. Biophys J 52(2):145–153CrossRefPubMedPubMedCentralGoogle Scholar
  132. Srividya B, Cardoza RM, Amin PD (2001) Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Release 73:205–211CrossRefPubMedGoogle Scholar
  133. Stevens MM, Qanadilo HF, Langer R, Shastri VP (2004) A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25:887–894CrossRefPubMedGoogle Scholar
  134. Stile RA, Healy KE (2001) Thermo-responsive peptide-modified hydrogels for tissue regeneration. Biomacromol 2:185–194CrossRefGoogle Scholar
  135. Suzuki M, Hanabusa K (2010) Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem Soc Rev 39(2):455–463CrossRefPubMedGoogle Scholar
  136. Suzuki M, Nigawara T, Yumoto M, Kimura M, Shirai H, Hanabusa K (2003) l-Lysine based gemini organogelators: their organogelation properties and thermally stable organogels. Org Biomol Chem 1(22):4124–4131CrossRefPubMedGoogle Scholar
  137. Suzuki M, Setoguchi C, Shirai H, Hanabusa K (2007) Organogelation by polymer organogelators with al-lysine derivative: formation of a three-dimensional network consisting of supramolecular and conventional polymers. Chemistry 13(29):8193–8200CrossRefPubMedGoogle Scholar
  138. Szlęk J, Pacławski A, Lau R, Jachowicz R, Kazemi P, Mendyk A (2016) Empirical search for factors affecting mean particle size of PLGA microspheres containing macromolecular drugs. Comput Methods Prog Biomed 134:137–147CrossRefGoogle Scholar
  139. Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ formingbiodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506CrossRefPubMedPubMedCentralGoogle Scholar
  140. Tan ML, Choong PF, Dass CR (2010) Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31:184–193CrossRefGoogle Scholar
  141. Tenchov B, Koynova R, Rapp G (1998) Accelerated formation of cubic phases in phosphatidylethanolamine dispersions. Biophys J 75(2):853–866CrossRefPubMedPubMedCentralGoogle Scholar
  142. Tessmar JK, Gopferich AM (2007) Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliv Rev 59:274–291CrossRefPubMedGoogle Scholar
  143. Thambi T, Li Y, Lee DS (2017) Injectable hydrogels for sustained release of therapeutic agents. J Control Release 267:57–66CrossRefPubMedGoogle Scholar
  144. Toro-Vazquez JF, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso M, Alonzo-Macias M, González-Chávez MM (2007) Thermal and textural properties of organogels developed by candelilla wax in safflower oil. J Am Oil Chem Soc 84(11):989–1000CrossRefGoogle Scholar
  145. Tran VT, Benoit JP, Venier-Julienne MC (2011) Why and how to prepare biodegradable, monodispersed, polymeric microparticles in the field of pharmacy? Int J Pharm 407:1–11CrossRefPubMedGoogle Scholar
  146. Ungaro F, Biondi M, d’Angelo I, Indolfi L, Quaglia F, Netti PA, La Rotonda MI (2006) Microsphere-integrated collagen scaffolds for tissue engineering: effect of microsphere formulation and scaffold properties on protein release kinetics. J Control Release 113:128–136CrossRefPubMedGoogle Scholar
  147. van Dijk M, van Nostrum CF, Hennink WE, Rijkers DT, Liskamp RM (2010) Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistry. Biomacromol 11:1608–1614CrossRefGoogle Scholar
  148. Van Hove AH, Benoit DS (2015) Depot-based delivery systems for pro-angiogenic peptides: a review. Front Bioeng Biotechnol 3:102PubMedPubMedCentralGoogle Scholar
  149. Varde NK, Pack DW (2004) Microspheres for controlled release drug delivery. Expert Opin Biol Ther 4:35–51CrossRefPubMedGoogle Scholar
  150. Versypt ANF, Pack DW, Braatz RD (2013) Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres—a review. J Control Release 165:29–37CrossRefGoogle Scholar
  151. Vintiloiu A, Leroux JC (2008) Organogels and their use in drug delivery—a review. J Control Release 125(3):179–192CrossRefPubMedGoogle Scholar
  152. Vintiloiu A, Lafleur M, Bastiat G, Leroux JC (2008) In situ-forming oleogel implant for rivastigmine delivery. Pharm Res 25(4):845–852CrossRefPubMedGoogle Scholar
  153. Vladisavljević GT, Schubert H (2003) Influence of process parameters on droplet size distribution in SPG membrane emulsification and stability of prepared emulsion droplets. J Membr Sci 225:15–23CrossRefGoogle Scholar
  154. Wan F, Yang M (2016) Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm 498:82–95CrossRefPubMedGoogle Scholar
  155. Wang DA, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, Fairbrother DH, Cascio B, Elisseeff JH (2007) Multifunctional chondroitinsulphate for cartilage tissue-biomaterial integration. Nat Mater 6:385–392CrossRefPubMedGoogle Scholar
  156. Wang D, Zhao J, Liu X, Sun F, Zhou Y, Teng L, Li Y (2014) Parenteral thermo-sensitive organogel for schizophrenia therapy, in vitro and in vivo evaluation. Eur J Pharm Sci 60:40–48CrossRefPubMedGoogle Scholar
  157. Wang J, Li Y, Wang X, Wang J, Tian H, Zhao P, Tian Y, Gu Y, Wang L, Wang C (2017) Droplet microfluidics for the production of microparticles and nanoparticles. Micromachines 8:22CrossRefPubMedCentralGoogle Scholar
  158. Weiden PJ, Kozma C, Grogg A, Locklear J (2004) Partial compliance and risk of rehospitalization among California Medicaid patients with schizophrenia. Psychiatr Serv 55:886–891CrossRefGoogle Scholar
  159. Wischke C, Schwendeman SP (2008) Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm 364:298–327CrossRefPubMedGoogle Scholar
  160. Wright AJ, Marangoni AG (2006) Formation, structure, and rheological properties of ricinelaidic acid-vegetable oil organogels. J Am Oil Chem Soc 83(6):497–503CrossRefGoogle Scholar
  161. Xie H, She ZG, Wang S, Sharma G, Smith JW (2012) One-step fabrication of polymeric Janus nanoparticles for drug delivery. Langmuir 28(9):4459–4463CrossRefPubMedPubMedCentralGoogle Scholar
  162. Xu XD, Zhang XZ, Cheng SX, Zhuo RX, Kennedy JF (2007) A strategy to introduce the pH sensitivity to temperature sensitive PNIPAAm hydrogels without weakening the thermosensitivity. Carbohydr Polym 68:416–423CrossRefGoogle Scholar
  163. Xu Q, Hashimoto M, Dang TT, Hoare T, Kohane DS, Whitesides GM, Langer R, Anderson DG (2009) Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5(13):1575–1581CrossRefPubMedPubMedCentralGoogle Scholar
  164. Yang JA, Yeom J, Hwang BW, Hoffman AS, Hahn SK (2014) In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci 39:1973–1986CrossRefGoogle Scholar
  165. Ye M, Kim S, Park K (2010) Issues in long-term protein delivery using biodegradable microparticles. J Control Release 146:241–260CrossRefPubMedGoogle Scholar
  166. Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37:1473–1481CrossRefPubMedGoogle Scholar
  167. Yuan S, Lei F, Liu Z, Tong Q, Si T, Xu RX (2015) Coaxial electrospray of curcumin-loaded microparticles for sustained drug release. PLoS ONE 10(7):e0132609CrossRefPubMedPubMedCentralGoogle Scholar
  168. Zamani M, Prabhakaran MP, Thian ES, Ramakrishna S (2014) Protein encapsulated core-shell structured particles prepared by coaxial electrospraying: investigation on material and processing variables. Int J Pharm 473(1–2):134–143CrossRefPubMedGoogle Scholar
  169. Zandstra J, Hiemstra C, Petersen AH, Zuidema J, van Beuge MM, Rodriguez S, Lathuile AA, Veldhuis GJ, Steendam R, Bank RA, Popa ER (2014) Microsphere size influences the foreign body reaction. Eur Cell Mater 28:335–347CrossRefPubMedGoogle Scholar
  170. Zhang Q, Song Y, Page SW, Garg S (2018) Evaluation of transdermal drug permeation as modulated by lipoderm and pluronic lecithin organogel. J Pharm Sci 107(2):587–594CrossRefPubMedGoogle Scholar
  171. Zhao LA, Weir MD, Xu HHK (2010) An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials 31:6502–6510CrossRefPubMedPubMedCentralGoogle Scholar
  172. Zheng Shu X, Liu Y, Palumbo FS, Luo Y, Prestwich GD (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25:1339–1348CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2019

Authors and Affiliations

  1. 1.College of PharmacyChosun UniversityGwangjuRepublic of Korea

Personalised recommendations