An updated review on therapeutic effects of nanoparticle-based formulations of saffron components (safranal, crocin, and crocetin)

  • Elaheh Mirhadi
  • Hooriyeh Nassirli
  • Bizhan Malaekeh-NikoueiEmail author


In recent years, nanotechnology has come to help researchers a lot in different fields. Especially in medicine and drug delivery, it presents new methods and technologies to increment levels of drug delivery to tumors and decrement side effects of drugs and molecules. Saffron, the dried stigma of the flower of the Crocus sativus plant, is one of the most widely used types of spice with many therapeutic applications that are related to its components: crocin, crocetin, and safranal. Saffron has been used as antispasmodic, anticatarrhal, eupeptic, nerve sedative, gingival sedative, diaphoretic, expectorant, carminative, stomachic, stimulant, emmenagogue, and aphrodisiac for years and now it has been made clear that it could have antioxidant, antidepressant, and anti-cancer activity. This review discusses how nanotechnology could help improve saffron’s pharmaceutical effects and makes it more functional in treatment.


Nanoparticles Saffron Crocin Crocetin Safranal 



This study was partially supported by a Grant from the Vice Chancellor for Research of Mashhad University of Medical Sciences, Mashhad, Iran.

Compliance with ethical standards

Conflict of interest

Authors declare that there is no conflict of interests in this study.

Statement of human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. Abdullaev F (2002) Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med 227(1):20–25CrossRefGoogle Scholar
  2. Abdullaev F, Espinosa-Aguirre j (2004) Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detect Prev 28(6):426–432CrossRefPubMedGoogle Scholar
  3. Ahmad A, Khan MM, Raza SS, Javed H, Ashafaq M et al (2012) Ocimum sanctum attenuates oxidative damage and neurological deficits following focal cerebral ischemia/reperfusion injury in rats. Neurol Sci 33(6):1239–1247CrossRefPubMedGoogle Scholar
  4. Ahmad N, Ahmad R, Abbas Naqvi A, Ashafaq M, Alam M. A et al (2017) The effect of safranal loaded mucoadhesive nanoemulsion on oxidative stress markers in cerebral ischemia. Artif Cells Nanomed Biotechnol 45(4):775–787CrossRefPubMedGoogle Scholar
  5. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alavizadeh SH, Hosseinzadeh H (2014) Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol 64:65–80CrossRefPubMedGoogle Scholar
  7. Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliver Rev 59(6):478–490CrossRefGoogle Scholar
  8. Amin B, Hosseinzadeh H (2012) Evaluation of aqueous and ethanolic extracts of saffron, Crocus sativus L., and its constituents, safranal and crocin in allodynia and hyperalgesia induced by chronic constriction injury model of neuropathic pain in rats. Fitoterapia 83(5):888–895CrossRefPubMedGoogle Scholar
  9. Anahita SZ, Hamid Reza AA, Seyyed Mahdi R, Neda S, Seyyed Reza HD et al (2017) Evaluation of reciprocal pharmaceutical effects and antibacterial activity of silver nanoparticles and methanolic extract of Crocus sativus L.(Saffron) on some bacterial strains. Int J Enteric Pathog 5(1):18–23CrossRefGoogle Scholar
  10. Asdaq SM, B, Inamdar MN (2010) Potential of Crocus sativus (saffron) and its constituent, crocin, as hypolipidemic and antioxidant in rats. Appl Biochem Biotech 162(2):358–372CrossRefGoogle Scholar
  11. Assimopoulou A, Sinakos Z, Papageorgiou V (2005) Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res 19(11):997–1000CrossRefPubMedGoogle Scholar
  12. Attama AA, Momoh MA, Builders PF (2012) Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development. Recent advances in novel drug carrier systems, Intech.
  13. Aung H, Wang C, Ni M, Fishbein A, Mehendale S et al (2007) Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Exp Oncol 29(3):175PubMedPubMedCentralGoogle Scholar
  14. Bagherzade G, Tavakoli MM, Namaei MH (2017) Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac J Trop Biomed 7(3):227–233CrossRefGoogle Scholar
  15. Bangham A, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–N227CrossRefPubMedGoogle Scholar
  16. Bhandari PR (2015) Crocus sativus L.(saffron) for cancer chemoprevention: a mini review. J Tradit Complement Med 5(2):81–87CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bouwmeester H, Poortman J, Peters RJ, Wijma E, Kramer E et al (2011) Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 5(5):4091–4103CrossRefPubMedGoogle Scholar
  18. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A. P (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bulbake U, Doppalapudi S, Kommineni N, Khan W (2017) Liposomal formulations in clinical use: an updated review. Pharmaceutics 9(2):12CrossRefPubMedCentralGoogle Scholar
  20. Carmona M, Zalacain A, Salinas M, Alonso G (2007) A new approach to saffron aroma. Crit Rev Food Sci 47(2):145–159CrossRefGoogle Scholar
  21. Chen Y, Yang T, Huang J, Tian X, Zhao C et al (2010) Comparative evaluation of the antioxidant capacity of crocetin and crocin in vivo. Chin Pharmacol Bull 26(2):248–251Google Scholar
  22. Davis SS, Washington C, West P, Illum L, Liversidge G et al (1987) Lipid emulsions as drug delivery systems. Ann NY Acad Sci 507(1):75–88CrossRefPubMedGoogle Scholar
  23. Deepak V, Umamaheshwaran PS, Guhan K, Nanthini RA, Krithiga B et al (2011) Synthesis of gold and silver nanoparticles using purified URAK. Coll Surf B 86(2):353–358CrossRefGoogle Scholar
  24. Deo B (2003) Growing saffron—the world’s most expensive spice. Crop Food Res 20(1):1–4Google Scholar
  25. Dubey SP, Lahtinen M, Sillanpää M (2010) Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Coll Surf A 364(1–3):34–41CrossRefGoogle Scholar
  26. El-Beshbishy HA, Hassan MH, Aly HA, Doghish AS, Alghaithy AA (2012) Crocin “saffron” protects against beryllium chloride toxicity in rats through diminution of oxidative stress and enhancing gene expression of antioxidant enzymes. Ecotox Environ Safe 83:47–54CrossRefGoogle Scholar
  27. El-Kharrag R, Amin A, Greish YE (2012) Low temperature synthesis of monolithic mesoporous magnetite nanoparticles. Ceram Int 38(1):627–634CrossRefGoogle Scholar
  28. El-Kharrag R, Amin A, Hisaindee S, Greish Y, Karam SM (2017) Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles. Int J Oncol 50(1):212–222CrossRefPubMedGoogle Scholar
  29. EL-Maraghy SA, Rizk SM, El-Sawalhi MM (2009) Hepatoprotective potential of crocin and curcumin against iron overload-induced biochemical alterations in rat. Afr J Biochem Res 3(5):215–221Google Scholar
  30. Escribano J, Alonso G-L, Coca-Prados M, Fernández J-A (1996) Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett 100(1–2):23–30CrossRefPubMedGoogle Scholar
  31. Esfanjani AF, Jafari SM, Assadpoor E, Mohammadi A (2015) Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. J Food Eng 165:149–155CrossRefGoogle Scholar
  32. Fernández J-A (2006) Anticancer properties of saffron, Crocus sativus Linn. Adv Phytomed 2:313–330CrossRefGoogle Scholar
  33. Fratoddi I, Venditti I, Cametti C, Russo MV (2015) How toxic are gold nanoparticles? The state-of-the-art. Nano Res 8(6):1771–1799CrossRefGoogle Scholar
  34. Garc-Olmo DC, Riese HH, Escribano J, Onta˜´ n J, Fernandez J. A et al (1999) Effects of long-term treatment of colon adenocarcinoma with crocin, a carotenoid from saffron (Crocus sativus L.): an experimental study in the rat. Nutr Cancer 35(2):120–126CrossRefGoogle Scholar
  35. Garud A, Singh D, Garud N (2012) Solid lipid nanoparticles (SLN): method, characterization and applications. Int J Curr Pharm Res 1(11):384–393CrossRefGoogle Scholar
  36. Golmohammadzadeh S, Jaafari MR, Hosseinzadeh H (2010) Does saffron have antisolar and moisturizing. effects? IJPR 9(2):133PubMedGoogle Scholar
  37. Golmohammadzadeh S, Imani F, Hosseinzadeh H, Jaafari MR (2011) Preparation, characterization and evaluation of sun protective and moisturizing effects of nanoliposomes containing safranal. Iran J Basic Med Sci 14(6):521PubMedPubMedCentralGoogle Scholar
  38. Hafezi Ghahestani Z, Alebooye Langroodi F, Mokhtarzadeh A, Ramezani M, Hashemi M (2017) Evaluation of anti-cancer activity of PLGA nanoparticles containing crocetin. Artif Cells Nanomed Biotechnol 45(5):955–960CrossRefPubMedGoogle Scholar
  39. Hanumanaik M, Patel SK, Sree KR (2013) Solid lipid nanoparticles: a review. Int J Pharm Sci Res 4(3):928–940Google Scholar
  40. He S-Y, Qian Z-Y, Tang F-T, Wen N, Xu G-L et al (2005) Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci 77(8):907–921CrossRefPubMedGoogle Scholar
  41. Hoshyar R, Khayati GR, Poorgholami M, Kaykhaii M (2016) A novel green one-step synthesis of gold nanoparticles using crocin and their anti-cancer activities. J Photoch Photobio B 159:237–242CrossRefGoogle Scholar
  42. Hosseinzadeh H, Jahanian Z (2010) Effect of Crocus sativus L.(saffron) stigma and its constituents, crocin and safranal, on morphine withdrawal syndrome in mice. Phytother Res 24(5):726–730PubMedGoogle Scholar
  43. Hosseinzadeh H, Sadeghnia HR (2005) Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus. J Pharm Pharm Sci 8(3):394–399PubMedGoogle Scholar
  44. Hosseinzadeh H, Talebzadeh F (2005) Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Fitoterapia 76(7–8):722–724CrossRefPubMedGoogle Scholar
  45. Hosseinzadeh H, Ziaei T (2006) Effects of Crocus sativus stigma extract and its constituents, crocin and safranal, on intact memory and scopolamine-induced learning deficits in rats performing the Morris water maze task. J Med Plants 3(19):40–50Google Scholar
  46. Hosseinzadeh H, Karimi G, Niapoor M (2003) Antidepressant effect of Crocus sativus L. stigma extracts and their constituents, crocin and safranal, in mice. I Int Symp Saffron Biol. Biotechnol 3(11):48–58Google Scholar
  47. Hosseinzadeh H, Sadeghnia HR, Ziaee T, Danaee A (2005a) Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J Pharm Pharm Sci 8(3):387–393PubMedGoogle Scholar
  48. Hosseinzadeh H, Behravan J, Ramezani M, Ajgan K (2005b) Anti-tumor and cytotoxic evaluation of Crocus sativus L. stigma and petal extracts using brine shrimp and potato disc assays. J Med Plants 3(15):59–65Google Scholar
  49. Hosseinzadeh H, Ziaee T, Sadeghi A (2008) The effect of saffron, Crocus sativus stigma, extract and its constituents, safranal and crocin on sexual behaviors in normal male rats. Phytomedicine 15(6–7):491–495CrossRefPubMedGoogle Scholar
  50. Hosseinzadeh H, Sadeghnia HR, Ghaeni FA, Motamedshariaty VS, Mohajeri SA (2012) Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother Res 26(3):381–386PubMedGoogle Scholar
  51. Imenshahidi M, Hosseinzadeh H, Javadpour Y (2010) Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother Res 24(7):990–994PubMedGoogle Scholar
  52. Imenshahidi M, Zafari H, Hosseinzadeh H (2011) Effects of crocin on the acquisition and reinstatement of morphine-induced conditioned place preference in mice. Pharmacologyonline 1:1007–1013Google Scholar
  53. Jensen SA, Day ES, Ko CH, Hurley LA, Luciano J. P et al (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5(209): 209ra152–209ra152CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kamble VA, Jagdale DM, Kadam VJ (2010) Solid lipid nanoparticles as drug delivery system. Int J Pharm Biol Sci 1:1–9Google Scholar
  55. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A 79(3):594–598CrossRefGoogle Scholar
  56. Khameneh B, Halimi V, Jaafari MR, Golmohammadzadeh S (2015) Safranal-loaded solid lipid nanoparticles: evaluation of sunscreen and moisturizing potential for topical applications. Iran J Basic Med Sci 18(1):58PubMedPubMedCentralGoogle Scholar
  57. Khazaeli P, Mehrabani M (2010) Screening of sun protective activity of the ethyl acetate extracts of some medicinal plants. Iran J Pharm Res: 5–9Google Scholar
  58. KJ P. P (2017) Multi-functional silver nanoparticles for drug delivery: a review. IJCRR 9(8):1Google Scholar
  59. Kong F-Y, Zhang J-W, Li R-F, Wang Z-X, Wang W-J, Wang W (2017) Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22(9):1445CrossRefPubMedCentralGoogle Scholar
  60. Konoshima T, Takasaki M, Tokuda H, Morimoto S, Tanaka H et al (1998) Crocin and crocetin derivatives inhibit skin tumour promotion in mice. Phytother Res 12(6):400–404CrossRefGoogle Scholar
  61. Lee I-A, Lee JH, Baek N-I, Kim D-H (2005) Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol Pharm Bull 28(11):2106–2110CrossRefPubMedGoogle Scholar
  62. Li H, Zhao X, Ma Y, Zhai G, Li L et al (2009) Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 133(3):238–244CrossRefPubMedGoogle Scholar
  63. Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11):6903–6913CrossRefPubMedPubMedCentralGoogle Scholar
  64. Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X et al (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fiber Toxicol 8(1):18CrossRefGoogle Scholar
  65. Lopresti AL, Drummond PD (2014) Saffron (Crocus sativus) for depression: a systematic review of clinical studies and examination of underlying antidepressant mechanisms of action. Hum Psychopharm Clin 29(6):517–527CrossRefGoogle Scholar
  66. Malaekeh-Nikouei B, Mousavi SH, Shahsavand S, Mehri S, Nassirli H et al (2013) Assessment of cytotoxic properties of safranal and nanoliposomal safranal in various cancer cell lines. Phytother Res 27(12):1868–1873CrossRefPubMedGoogle Scholar
  67. Mary TA, Shanthi K, Vimala K, Soundarapandian K (2016) PEG functionalized selenium nanoparticles as a carrier of crocin to achieve anticancer synergism. RSC Adv 6(27):22936–22949CrossRefGoogle Scholar
  68. Mehrnia M-A, Jafari S-M, Makhmal-Zadeh BS, Maghsoudlou Y (2016) Crocin loaded nano-emulsions: factors affecting emulsion properties in spontaneous emulsification. Int J Biol Macromol 84:261–267CrossRefPubMedGoogle Scholar
  69. Mehrnia M-A, Jafari S-M, Makhmal-Zadeh BS, Maghsoudlou Y (2017) Rheological and release properties of double nano-emulsions containing crocin prepared with Angum gum, Arabic gum and whey protein. Food hydrocoll 66:259–267CrossRefGoogle Scholar
  70. Melnyk JP, Wang S, Marcone MF (2010) Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res Int 43(8):1981–1989CrossRefGoogle Scholar
  71. Morishita M, Matsuzawa A, Takayama K, Isowa K, Nagai T (1998) Improving insulin enteral absorption using water-in-oil-in-water emulsion. Int J Pharm 172(1–2):189–198CrossRefGoogle Scholar
  72. Mousavi SH, Tavakkol-Afshari J, Brook A, Jafari-Anarkooli I (2009) Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells. Food Chem Toxicol 47(8):1909–1913CrossRefPubMedGoogle Scholar
  73. Mousavi SH, Moallem SA, Mehri S, Shahsavand S, Nassirli H et al (2011) Improvement of cytotoxic and apoptogenic properties of crocin in cancer cell lines by its nanoliposomal form. Pharm Biol 49(10):1039–1045CrossRefPubMedGoogle Scholar
  74. Naghizadeh B, Boroushaki MT, Vahdati Mashhadian N, Mansouri SMT (2008) Protective effects of crocin against cisplatin-induced acute renal failure and oxidative stress in rats. Iran Biomed J 12(2):93–100PubMedGoogle Scholar
  75. Nakhare S, Vyas S (1996) Preparation and characterization of multiple emulsion based systems for controlled diclofenac sodium release. J Microencapsul 13(3):281–292CrossRefPubMedGoogle Scholar
  76. Negbi M (1999) Saffron cultivation: past, present and future prospects. Saffron Crocus sativus L.: 1–17Google Scholar
  77. Niska K, Santos-Martinez MJ, Radomski MW, Inkielewicz-Stepniak I (2015) CuO nanoparticles induce apoptosis by impairing the antioxidant defense and detoxification systems in the mouse hippocampal HT22 cell line: protective effect of crocetin. Toxicol In Vitro 29(4):663–671CrossRefPubMedGoogle Scholar
  78. Ohba T, Ishisaka M, Tsujii S, Tsuruma K, Shimazawa M et al (2016) Crocetin protects ultraviolet A-induced oxidative stress and cell death in skin in vitro and in vivo. Eur J Pharmacol 789:244–253CrossRefPubMedGoogle Scholar
  79. Okochi H, Nakano M (1996) Basic studies on formulation, method of preparation and characterization of water-in-oil-in-water type multiple emulsions containing vancomycin. Chem Pharm Bull 44(1):180–186CrossRefGoogle Scholar
  80. PADHI SARANGIMK S (2016) Solid lipid nanoparticles–a review. Drugs 5:7Google Scholar
  81. Park SH, Choi JY, Lee YH, Park J, Song H (2015) Formation of metal selenide and metal–selenium nanoparticles using distinct reactivity between selenium and noble metals. Chem Asian J 10(7):1452–1456CrossRefPubMedGoogle Scholar
  82. Pfander H, Schurtenberger H (1982) Biosynthesis of C20-carotenoids in Crocus sativus. Phytochemistry 21(5):1039–1042CrossRefGoogle Scholar
  83. Pillai O, Panchagnula R (2001) Polymers in drug delivery. Curr Opin Chem Biol 5(4):447–451CrossRefPubMedGoogle Scholar
  84. Pragati S, Kuldeep S, Ashok S, Satheesh M (2009) Solid lipid nanoparticles: a promising drug delivery technology. Int J Pharm Sci Nanotechnol 2:509–516Google Scholar
  85. Rahaiee S, Shojaosadati SA, Hashemi M, Moini S, Razavi SH (2015) Improvement of crocin stability by biodegradeble nanoparticles of chitosan–alginate. Int J Biol Macromol 79:423–432CrossRefPubMedGoogle Scholar
  86. Rahaiee S, Hashemi M, Shojaosadati SA, Moini S, Razavi SH (2017) Nanoparticles based on crocin loaded chitosan–alginate biopolymers: antioxidant activities, bioavailability and anticancer properties. Int J Biol Macromol 99:401–408CrossRefPubMedGoogle Scholar
  87. Ramón E, Alonso ER, Coderch C, Maza L, L AD, Lopez O et al (2005) Liposomes as alternative vehicles for sun filter formulations. Drug Deliv 12(2):83–88CrossRefPubMedGoogle Scholar
  88. Rancan F, Rosan S, Boehm K, Fernández E, Hidalgo M. E et al (2002) Protection against UVB irradiation by natural filters extracted from lichens. J Photoch Photobio B 68(2–3):133–139CrossRefGoogle Scholar
  89. Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z et al (2013) Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma. Planta Med 79(06):447–451CrossRefPubMedGoogle Scholar
  90. Rezaee R, Hosseinzadeh H (2013) Safranal: from an aromatic natural product to a rewarding pharmacological agent. Iran J Basic Med Sci 16(1):12PubMedPubMedCentralGoogle Scholar
  91. Rios J, Recio M, Giner R, Manez S (1996) An update review of saffron and its active constituents. Phytother Res 10(3):189–193CrossRefGoogle Scholar
  92. Saewan N, Jimtaisong A (2015) Natural products as photoprotection. J Cosmet Dermatol 14(1):47–63CrossRefPubMedGoogle Scholar
  93. Samarghandian S, Borji A (2014) Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharmacognosy Res 6(2):99CrossRefPubMedPubMedCentralGoogle Scholar
  94. Schubert M, Müller-Goymann C (2003) Solvent injection as a new approach for manufacturing lipid nanoparticles–evaluation of the method and process parameters. Eur J Pharm Bio 55(1):125–131CrossRefGoogle Scholar
  95. Shahi T, Assadpour E, Jafari SM (2016) Main chemical compounds and pharmacological activities of stigmas and tepals of ‘red gold’; saffron. Trends Food Sci Tech 58:69–78CrossRefGoogle Scholar
  96. Sharma HS, Sharma A (2007) Nanoparticles aggravate heat stress induced cognitive deficits, blood–brain barrier disruption, edema formation and brain pathology. Prog Brain Res 162:245–273CrossRefPubMedGoogle Scholar
  97. Silva-Cunha A, Grossiord J, Puisieux F, Seiller M (1997) W/O/W multiple emulsions of insulin containing a protease inhibitor and an absorption enhancer: preparation, characterization and determination of stability towards proteases in vitro. Int J Pharm 158(1):79–89CrossRefGoogle Scholar
  98. Singh A, Sahoo SK (2014) Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today 19(4):474–481CrossRefPubMedGoogle Scholar
  99. Solgi M (2014) Evaluation of plant-mediated silver nanoparticles synthesis and its application in postharvest physiology of cut flowers. Physiol Mol Biol Pla 20(3):279–285CrossRefGoogle Scholar
  100. Solgi M, Taghizadeh M (2012) Silver nanoparticles ecofriendly synthesis by two medicinal plants. Int J Nanomater Biostruct 2(4):60–64Google Scholar
  101. Swathi G, Prasanthi N, Manikiran S, Ramarao N (2012) Solid lipid nanoparticles: colloidal carrier systems for drug delivery. Int J Pharm Sci Res 1(12):1–16Google Scholar
  102. Taghva A, Entezari M (2017) Biosynthesis and characterization of silver nanoparticles using aqueous extract of Saffron corm and evaluation of their antibacterial and mutagenesis activity. J Police Med 6(1):57–66Google Scholar
  103. Tamaddonfard E, Hamzeh-Gooshchi N (2010) Effect of crocin on the morphine-induced antinociception in the formalin test in rats. Phytother Res 24(3):410–413CrossRefPubMedGoogle Scholar
  104. Tao A, Sinsermsuksakul P, Yang P (2006) Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed 45(28):4597–4601CrossRefGoogle Scholar
  105. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262CrossRefPubMedGoogle Scholar
  106. Thamer NA, Almashhedy LA (2014) Green synthesis optimization and characterization of silver nanoparticles using aqueous extract of Crocus sativus L. Int J Pharm Bio Sci 5(4):759–770Google Scholar
  107. Tjälve H, Henriksson J (1999) Uptake of metals in the brain via olfactory pathways. Neurotoxicology 20(2–3):181–195PubMedGoogle Scholar
  108. Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J et al (2003) Multifunctional gold nanoparticle—peptide complexes for nuclear targeting. J Am Chem Soc 125(16):4700–4701CrossRefPubMedGoogle Scholar
  109. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J et al (2015) Global cancer statistics, 2012. CA A Cancer J Clin 65(2):87–108CrossRefGoogle Scholar
  110. Üner M, Yener G (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed 2(3):289Google Scholar
  111. Uno T, Yamaguchi T, Li XK, Suzuki Y, Hashimoto H et al (1997) The pharmacokinetics of water-in-oil-in-water-type multiple emulsion of a new tacrolimus formulation. Lipids 32(5):543–548CrossRefPubMedGoogle Scholar
  112. Verissimo TV, Santos NT, Silva JR, Azevedo RB, Gomes AJ et al (2016) In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. Mater Sci Eng C 65:199–204CrossRefGoogle Scholar
  113. Vijayakumar R, Devi V, Adavallan K, Saranya D (2011) Green synthesis and characterization of gold nanoparticles using extract of anti-tumor potent Crocus sativus. Phys E Low Dimens Syst Nanostruct 44(3):665–671CrossRefGoogle Scholar
  114. Wang Y, Sun J, Liu C, Fang C (2014) Protective effects of crocetin pretreatment on myocardial injury in an ischemia/reperfusion rat model. Eur J Pharmacol 741:290–296CrossRefPubMedGoogle Scholar
  115. Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem A Eur J 11(2):454–463CrossRefGoogle Scholar
  116. Wissing S, Müller R (2001) A novel sunscreen system based on tocopherol acetate incorporated into solid lipid nanoparticles. Int J Cosmet Sci 23(4):233–243CrossRefPubMedGoogle Scholar
  117. Yadav N, Khatak S, Sara US (2013) Solid lipid nanoparticles-a review. Int J Appl Pharm 5(2):8–18Google Scholar
  118. Yu S, Zhang W, Liu W, Zhu W, Guo R et al (2015) The inhibitory effect of selenium nanoparticles on protein glycation in vitro. Nanotechnology 26(14):145703CrossRefPubMedGoogle Scholar
  119. Zhang XD, Gillespie SK, Hersey P (2004) Staurosporine induces apoptosis of melanoma by both caspase-dependent and-independent apoptotic pathways. Mol Cancer Ther 3(2):187–197PubMedGoogle Scholar
  120. Zhang Y, Li X, Huang Z, Zheng W, Fan C, Chen T (2013) Enhancement of cell permeabilization apoptosis-inducing activity of selenium nanoparticles by ATP surface decoration. Nanomedicine 9(1):74–84CrossRefPubMedGoogle Scholar
  121. Zheng S, Li X, Zhang Y, Xie Q, Wong Y-S (2012) PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction. Int J Nanomed 7:3939Google Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2019

Authors and Affiliations

  1. 1.Nanotechnology Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
  2. 2.Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran

Personalised recommendations