Advertisement

Journal of Pharmaceutical Investigation

, Volume 48, Issue 1, pp 89–111 | Cite as

Peptides as drug delivery vehicles across biological barriers

  • Debadyuti Ghosh
  • Xiujuan Peng
  • Jasmim Leal
  • Rashmi P. Mohanty
Review

Abstract

Peptides are small biological molecules that are attractive in drug delivery and materials engineering for applications including therapeutics, molecular building blocks and cell-targeting ligands. Peptides are small but can possess complexity and functionality as larger proteins. Due to their intrinsic properties, peptides are able to overcome the physiological and transport barriers presented by diseases. In this review, we discuss the progress of identifying and using peptides to shuttle across biological barriers and facilitate transport of drugs and drug delivery systems for improved therapy. Here, the focus of this review is on rationally designed, phage display peptides, and even endogenous peptides as carriers to penetrate biological barriers, specifically the blood–brain barrier (BBB), the gastrointestinal tract (GI), and the solid tumor microenvironment (T). We will discuss recent advances of peptides as drug carriers in these biological environments. From these findings, challenges and potential opportunities to iterate and improve peptide-based approaches will be discussed to translate their promise towards the clinic to deliver drugs for therapeutic efficacy.

Keywords

Peptides Drug delivery Carrier Blood–brain barrier GI Tumor 

Notes

Acknowledgements

The authors acknowledge and are thankful for funding provided by the National Institutes of Health (R01-HL138251). This article does not contain any studies with human or animal subjects performed by any of the authors. This article follows ethical standards set by the International Standards for Editors and Authors. This article does not involve any studies conducted by the authors and informed consent was not needed.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. AC’t Hoen PAC, Jirka SMG, Ten Broeke BR et al (2012) Phage display screening without repetitious selection rounds. Anal Biochem 421:622–631.  https://doi.org/10.1016/j.ab.2011.11.005 CrossRefPubMedGoogle Scholar
  2. Agarwal V (2001) Current status of the oral delivery of insulin. Pharm Technol 25:76–90Google Scholar
  3. Agemy L (2011) Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Nat Acad Sci 108:17450–17455.  https://doi.org/10.1073/pnas.1114518108 CrossRefPubMedGoogle Scholar
  4. Aguirre TAS, Teijeiro-Osorio D, Rosa M et al (2016) Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev 106:223–241.  https://doi.org/10.1016/j.addr.2016.02.004 CrossRefPubMedGoogle Scholar
  5. Akerman ME, Chan WCW, Laakkonen P et al (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99:12617–12621.  https://doi.org/10.1073/pnas.152463399 CrossRefPubMedGoogle Scholar
  6. Alberici L, Roth L, Sugahara KN et al (2013) De novo design of a tumor-penetrating peptide. Cancer Res 73:804–812.  https://doi.org/10.1158/0008-5472.CAN-12-1668 CrossRefPubMedGoogle Scholar
  7. Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1:219–227.  https://doi.org/10.1016/S1535-6108(02)00051-X CrossRefPubMedGoogle Scholar
  8. Arap W (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380.  https://doi.org/10.1126/science.279.5349.377 CrossRefPubMedGoogle Scholar
  9. Bagri A, Tessier-Lavigne M, Watts RJ (2009) Neuropilins in tumor biology. Clin Cancer Res 15:1860–1864.  https://doi.org/10.1158/1078-0432.CCR-08-0563 CrossRefPubMedGoogle Scholar
  10. Bastian SEP, Walton PE, Ballard FJ, Belford DA (1999) Transport of IGF-I across epithelial cell monolayers. J Endocrinol 162:361–369.  https://doi.org/10.1677/joe.0.1620361 CrossRefPubMedGoogle Scholar
  11. Bernkop-Schnurch A (1998) The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. J Control Release 52:1–16.  https://doi.org/10.1016/S0168-3659(97)00204-6 CrossRefPubMedGoogle Scholar
  12. Bertrand Y, Currie J-C, Poirier J et al (2011) Influence of glioma tumour microenvironment on the transport of ANG1005 via low-density lipoprotein receptor-related protein 1. Br J Cancer 105:1697–1707.  https://doi.org/10.1038/bjc.2011.427 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bi Y, Liu L, Lu Y et al (2016) T7 Peptide-functionalized PEG-PLGA micelles loaded with carmustine for targeting therapy of glioma. ACS Appl Mater Interfaces 8:27465–27473.  https://doi.org/10.1021/acsami.6b05572 CrossRefGoogle Scholar
  14. Boegh M, García-Díaz M, Müllertz A, Nielsen HM (2015) Steric and interactive barrier properties of intestinal mucus elucidated by particle diffusion and peptide permeation. Eur J Pharm Biopharm 95:136–143.  https://doi.org/10.1016/j.ejpb.2015.01.014 CrossRefPubMedGoogle Scholar
  15. Boohaker RJ, Lee MW, Vishnubhotla P et al (2012) The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem 19:3794–3804.  https://doi.org/10.2174/092986712801661004 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Camenisch G, Alsenz J, Van De Waterbeemd H, Folkers G (1998) Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs lipophilicity and molecular weight. Eur J Pharm Sci 6:313–319.  https://doi.org/10.1016/S0928-0987(97)10019-7 CrossRefGoogle Scholar
  17. Ceramide E, Erdreich-epstein A, Shimada H et al (2000) Integrins αvβ3 and αvβ5 are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased. Cancer Res 60:712–721Google Scholar
  18. Chen C, Duan Z, Yuan Y et al (2017) Peptide-22 and cyclic RGD functionalized liposomes for glioma targeting drug delivery overcoming BBB and BBTB. ACS Appl Mater Interfaces 9:5864–5873.  https://doi.org/10.1021/acsami.6b15831 CrossRefPubMedGoogle Scholar
  19. Connor Y, Tekleab S, Nandakumar S et al (2015) Physical nanoscale conduit-mediated communication between tumour cells and the endothelium modulates endothelial phenotype. Nat Commun 6:8671.  https://doi.org/10.1038/ncomms9671 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cui Y, Zhang M, Zeng F et al (2016) Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater Interfaces 8:32159–32169.  https://doi.org/10.1021/acsami.6b10175 CrossRefPubMedGoogle Scholar
  21. Cun X, Chen J, Ruan S et al (2015) A novel strategy through combining irgd peptide with tumor-microenvironment-responsive and multistage nanoparticles for deep tumor penetration. ACS Appl Mater Interfaces 7:27458–27466.  https://doi.org/10.1021/acsami.5b09391 CrossRefPubMedGoogle Scholar
  22. Curnis F, Gasparri A, Sacchi A et al (2004) Coupling tumor necrosis factor-alpha with alphaV integrin ligands improves its antineoplastic activity. Cancer Res 64:565–571.  https://doi.org/10.1158/0008-5472.Can-03-1753 doiCrossRefPubMedGoogle Scholar
  23. Curnis F, Sacchi A, Gasparri A et al (2008) Isoaspartate-glycine-arginine: a new tumor vasculature-targeting motif. Cancer Res 68:7073–7082.  https://doi.org/10.1158/0008-5472.CAN-08-1272 CrossRefGoogle Scholar
  24. Dai W, Fan Y, Zhang H et al (2014) A comprehensive study of iRGD-modified liposomes with improved chemotherapeutic efficacy on B16 melanoma. Drug Deliv 7544:1–11.  https://doi.org/10.3109/10717544.2014.903580 CrossRefGoogle Scholar
  25. De G, Ko J-K, Tan T et al (2014) Amphipathic tail-anchoring peptide is a promising therapeutic agent for prostate cancer treatment. Oncotarget 5:7734–7747.  https://doi.org/10.18632/oncotarget.2301 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Demeule M, Régina A, Ché C et al (2008) Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 324:1064–1072.  https://doi.org/10.1124/jpet.107.131318 CrossRefPubMedGoogle Scholar
  27. Díaz-Perlas C, Sánchez-Navarro M, Teixidó M, Giralt E (2016) Phage display as a tool to discover BBB-shuttle peptides: panning against a human blood-brain barrier cellular model. J Pept Sci 22:S107.  https://doi.org/10.1002/bip.22928 CrossRefGoogle Scholar
  28. Du R, Zhong T, Zhang WQ et al (2014) Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid-paclitaxel (CLA-PTX) on B16-F10 melanoma. Int J Nanomed 9:3091–3105.  https://doi.org/10.2147/IJN.S65664 CrossRefGoogle Scholar
  29. Duerr DM, White SJ, Schluesener HJ (2004) Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. J Virol Methods 116:177–180.  https://doi.org/10.1016/j.jviromet.2003.11.012 CrossRefPubMedGoogle Scholar
  30. Eliceiri BP, Cheresh DA (2001) Adhesion events in angiogenesis. Curr Opin Cell Biol 13:563–568.  https://doi.org/10.1016/S0955-0674(00)00252-0 CrossRefPubMedGoogle Scholar
  31. Fan X, Venegas R, Fey R et al (2007) An in vivo approach to structure activity relationship analysis of peptide ligands. Pharm Res 24:868–879.  https://doi.org/10.1007/s11095-007-9238-z CrossRefPubMedGoogle Scholar
  32. Fievez V, Plapied L, Plaideau C et al (2010) In vitro identification of targeting-ligands of human M cells by phage display. Int J Pharm 394:35–42.  https://doi.org/10.1016/j.ijpharm.2010.04.023 CrossRefPubMedGoogle Scholar
  33. Fittipaldi A, Giacca M (2005) Transcellular protein transduction using the Tat protein of HIV-1. Adv Drug Deliv Rev 57:597–608.  https://doi.org/10.1016/j.addr.2004.10.011 CrossRefPubMedGoogle Scholar
  34. Fogal V, Zhang L, Krajewski S, Ruoslahti E (2008) Mitochondrial/cell-surface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma. Cancer Res 68:7210–7218.  https://doi.org/10.1158/0008-5472.CAN-07-6752 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Frey A, Giannasca KT, Weltzin R et al (1996) Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med 184:1045–1059.  https://doi.org/10.1084/jem.184.3.1045 CrossRefPubMedGoogle Scholar
  36. Gaillard PJ, Appeldoorn CCM, Dorland R et al (2014) Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS ONE.  https://doi.org/10.1371/journal.pone.0082331 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gao H, Qian J, Cao S et al (2012) Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 33:5115–5123.  https://doi.org/10.1016/j.biomaterials.2012.03.058 CrossRefPubMedGoogle Scholar
  38. Gao H, Yang Z, Zhang S et al (2014) Study and evaluation of mechanisms of dual targeting drug delivery system with tumor microenvironment assays compared with normal assays. Acta Biomater 10:858–867.  https://doi.org/10.1016/j.actbio.2013.11.003 CrossRefPubMedGoogle Scholar
  39. Georgieva JV, Brinkhuis RP, Stojanov K et al (2012) Peptide-mediated blood-brain barrier transport of polymersomes. Angew Chem Int Ed 51:8339–8342.  https://doi.org/10.1002/anie.201202001 CrossRefGoogle Scholar
  40. Goldberg M, Gomez-Orellana I (2003) Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov 2:289–295.  https://doi.org/10.1038/nrd1067 CrossRefPubMedGoogle Scholar
  41. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188.  https://doi.org/10.1016/0092-8674(88)90262-0 CrossRefPubMedGoogle Scholar
  42. Gu G, Gao X, Hu Q et al (2013) The influence of the penetrating peptide iRGD on the effect of paclitaxel-loaded MT1-AF7p-conjugated nanoparticles on glioma cells. Biomaterials 34:5138–5148.  https://doi.org/10.1016/j.biomaterials.2013.03.036 CrossRefPubMedGoogle Scholar
  43. Guixer B, Arroyo X, Belda I et al (2016) Chemically synthesized peptide libraries as a new source of BBB shuttles. Use of mass spectrometry for peptide identification. J Pept Sci 22:577–591.  https://doi.org/10.1002/psc.2900 CrossRefGoogle Scholar
  44. Hambley TW WNH (2009) Is anticancer drug development heading in the right direction?. Cancer Res 69:1259–1262.  https://doi.org/10.1158/0008-5472.CAN-08-3786 CrossRefPubMedGoogle Scholar
  45. Hamzeh-Mivehroud M, Mahmoudpour A, Rezazadeh H, Dastmalchi S (2008) Non-specific translocation of peptide-displaying bacteriophage particles across the gastrointestinal barrier. Eur J Pharm Biopharm 70:577–581.  https://doi.org/10.1016/j.ejpb.2008.06.005 CrossRefPubMedGoogle Scholar
  46. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms review of the angiogenic switchduring tumorigenesis. Cell 86:353–364.  https://doi.org/10.1016/S0092-8674(00)80108-7 CrossRefPubMedGoogle Scholar
  47. Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4:806–813.  https://doi.org/10.1038/nrc1456 CrossRefPubMedGoogle Scholar
  48. Higgins LM, Lambkin I, Donnelly G et al (2004) In vivo phage display to identify M cell-targeting ligands. Pharm Res 21:695–705.  https://doi.org/10.1023/B:PHAM.0000022418.80506.9a CrossRefPubMedGoogle Scholar
  49. Hu Gu G, Liu Z, Jiang M, Kang T, Miao D, Tu Y, Pang Z, Song Q, Yao L, Xia H, Chen H, Jiang X, Gaob X, Chen JQ (2013) F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyP-1 peptide for anti-glioma drug delivery. Biomaterials 34:1135–1145.  https://doi.org/10.1016/j.biomaterials.2012.10.048 CrossRefPubMedGoogle Scholar
  50. Hwang SR, Byun Y (2014) Advances in oral macromolecular drug delivery. Expert Opin Drug Deliv 11:1955–1967.  https://doi.org/10.1517/17425247.2014.945420 CrossRefPubMedGoogle Scholar
  51. Jain RK (1988) Determinants of tumor blood flow: a review. Cancer Res 48:2641–2658.  https://doi.org/10.1146/annurev.bioeng.1.1.241 CrossRefPubMedGoogle Scholar
  52. Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1:241–263.  https://doi.org/10.1146/annurev.bioeng.1.1.241 CrossRefPubMedGoogle Scholar
  53. Jain RK, Joshi R, Byrav DP et al (2001) Delivery of molecular and cellular medicine to solid tumors1PII of original article: S0169–409X(97)00027 – 6. The article was originally published. Advanced Drug Delivery Reviews 26 (1997) 71–90.1. Adv Drug Deliv Rev 46:149–168.  https://doi.org/10.1016/S0169-409X(00)00131-9 CrossRefPubMedGoogle Scholar
  54. Järver P, Mäger I, Langel Ü (2010) In vivo biodistribution and efficacy of peptide mediated delivery. Trends Pharmacol Sci 31:528–535.  https://doi.org/10.1016/j.tips.2010.07.006 CrossRefPubMedGoogle Scholar
  55. Jiang T, Olson ES, Nguyen QT et al (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci USA 101:17867–17872.  https://doi.org/10.1073/pnas.0408191101 CrossRefPubMedGoogle Scholar
  56. Jin Y, Song Y, Zhu X et al (2012) Biomaterials Goblet cell-targeting nanoparticles for oral insulin delivery and the in fl uence of mucus on insulin transport. Biomaterials 33:1573–1582.  https://doi.org/10.1016/j.biomaterials.2011.10.075 CrossRefPubMedGoogle Scholar
  57. Kamei N, Morishita M, Eda Y et al (2008a) Usefulness of cell-penetrating peptides to improve intestinal insulin absorption. J Control Release 132:21–25.  https://doi.org/10.1016/j.jconrel.2008.08.001 CrossRefPubMedGoogle Scholar
  58. Kamei N, Morishita M, Ehara J, Takayama K (2008b) Permeation characteristics of oligoarginine through intestinal epithelium and its usefulness for intestinal peptide drug delivery. J Control Release 131:94–99.  https://doi.org/10.1016/j.jconrel.2008.07.016 CrossRefPubMedGoogle Scholar
  59. Kamei N, Morishita M, Takayama K (2009) Importance of intermolecular interaction on the improvement of intestinal therapeutic peptide/protein absorption using cell-penetrating peptides. J Control Release 136:179–186.  https://doi.org/10.1016/j.jconrel.2009.02.015 CrossRefPubMedGoogle Scholar
  60. Kang SK, Woo JH, Kim MK et al (2008) Identification of a peptide sequence that improves transport of macromolecules across the intestinal mucosal barrier targeting goblet cells. J Biotechnol 135:210–216.  https://doi.org/10.1016/j.jbiotec.2008.01.021 CrossRefPubMedGoogle Scholar
  61. Kang T, Jiang M, Jiang D et al (2015) Enhancing glioblastoma-specific penetration by functionalization of nanoparticles with an iron-mimic peptide targeting transferrin/transferrin receptor complex. Mol Pharm 12:2947–2961.  https://doi.org/10.1021/acs.molpharmaceut.5b00222 CrossRefPubMedGoogle Scholar
  62. Kannan R, Chakrabarti R, Tang D et al (2000) GSH transport in human cerebrovascular endothelial cells and human astrocytes: evidence for luminal localization of Na+-dependent GSH transport in HCEC. Brain Res 852:374–382.  https://doi.org/10.1016/S0006-8993(99)02184-8 CrossRefPubMedGoogle Scholar
  63. Karmali PP, Kotamraju VR, Kastantin M et al (2009) Targeting of albumin-embedded paclitaxel nanoparticles to tumors. Nanomedicine Nanotechnology Biol Med 5:73–82.  https://doi.org/10.1016/j.nano.2008.07.007 CrossRefGoogle Scholar
  64. Kauffman B, Fuselier T, He J, Wimley W (2015) Mechanism matters: a taxonomy of cell penetrating peptides. Trends Biochem Sci 40:749–764.  https://doi.org/10.3109/10253890.2015.1094689.Post-Traumatic CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kenngott EE, Cole S, Hein WR et al (2016) Identification of targeting peptides for mucosal delivery in sheep and mice. Mol Pharm 13:202–210.  https://doi.org/10.1021/acs.molpharmaceut.5b00635 CrossRefPubMedGoogle Scholar
  66. Khafagy ES, Morishita M (2012) Oral biodrug delivery using cell-penetrating peptide. Adv Drug Deliv Rev 64:531–539.  https://doi.org/10.1016/j.addr.2011.12.014 CrossRefGoogle Scholar
  67. Kinsella JM, Jimenez RE, Karmali PP et al (2011) X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew Chem Int Ed 50:12308–12311.  https://doi.org/10.1002/anie.201104507 CrossRefGoogle Scholar
  68. Koivunen E, Wang B, Ruoslahti E (1995) Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology 13:265–270.  https://doi.org/10.1038/nbt0395-265 CrossRefPubMedGoogle Scholar
  69. Komin A, Russell LM, Hristova KA, Searson PC (2017) Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: mechanisms and challenges. Adv Drug Deliv Rev 110–111:52–64.  https://doi.org/10.1016/j.addr.2016.06.002 CrossRefPubMedGoogle Scholar
  70. Kompella UB, Lee VHL (2001) Delivery systems for penetration enhancement of peptide and protein drugs: design considerations. Adv Drug Deliv Rev 46:211–245.  https://doi.org/10.1016/S0169-409X(00)00137-X CrossRefPubMedGoogle Scholar
  71. Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E (2002) A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med 8:751–755.  https://doi.org/10.1038/nm720 CrossRefPubMedGoogle Scholar
  72. Langguth P, Bohner V, Heizmann J et al (1997) The challenge of proteolytic enzymes in intestinal peptide delivery. J Control Release 46:39–57.  https://doi.org/10.1016/S0168-3659(96)01586-6 CrossRefGoogle Scholar
  73. Larhed AW, Artursson P, Gråsjö J, Björk E (1997) Diffusion of drugs in native and purified gastrointestinal mucus. J Pharm Sci 86:660–665.  https://doi.org/10.1021/js960503w CrossRefPubMedGoogle Scholar
  74. Larhed AW, Artursson P, Björk E (1998) The influence of intestinal mucus components on the diffusion of drugs. Pharm Res 15:66–71.  https://doi.org/10.1023/A:1011948703571 CrossRefPubMedGoogle Scholar
  75. Lee VHL, Yamamoto A (1989) Penetration and enzymatic barriers to peptide and protein absorption. Adv Drug Deliv Rev 4:171–207.  https://doi.org/10.1016/0169-409X(89)90018-5 CrossRefGoogle Scholar
  76. Lee JH, Engler JA, Collawn JF, Moore BA (2001) Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem 268:2004–2012.  https://doi.org/10.1046/j.1432-1327.2001.02073.x CrossRefPubMedGoogle Scholar
  77. Li J, Feng L, Fan L et al (2011) Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials 32:4943–4950.  https://doi.org/10.1016/j.biomaterials.2011.03.031 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Li J, Zhang Q, Pang Z et al (2012) Identification of peptide sequences that target to the brain using in vivo phage display. Amino Acids 42:2373–2381.  https://doi.org/10.1007/s00726-011-0979-y CrossRefPubMedGoogle Scholar
  79. Li J, Zhang C, Li J et al (2013) Brain delivery of NAP with PEG-PLGA nanoparticles modified with phage display peptides. Pharm Res 30:1813–1823.  https://doi.org/10.1007/s11095-013-1025-4 CrossRefPubMedGoogle Scholar
  80. Li M, Tang Z, Zhang D et al (2015a) Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models. Biomaterials 51:161–172.  https://doi.org/10.1016/j.biomaterials.2015.02.002 CrossRefPubMedGoogle Scholar
  81. Li X, Wang C, Liang R et al (2015b) The glucose-lowering potential of exenatide delivered orally via goblet cell-targeting nanoparticles. Pharm Res 32:1017–1027.  https://doi.org/10.1007/s11095-014-1513-1 CrossRefPubMedGoogle Scholar
  82. Li Y, Zheng X, Gong M, Zhang J (2016) Delivery of a peptide-drug conjugate targeting the blood brain barrier improved the efficacy of paclitaxel against glioma.  https://doi.org/10.18632/oncotarget.12708
  83. Liang JF, Yang VC (2005) Insulin-cell penetrating peptide hybrids with improved intestinal absorption efficiency. Biochem Biophys Res Commun 335:734–738.  https://doi.org/10.1016/j.bbrc.2005.07.142 CrossRefPubMedGoogle Scholar
  84. Lindqvist A, Rip J, Van Kregten J et al (2016) In vivo functional evaluation of increased brain delivery of the opioid peptide DAMGO by glutathione-PEGylated liposomes. Pharm Res 33:177–185.  https://doi.org/10.1007/s11095-015-1774-3 CrossRefPubMedGoogle Scholar
  85. Lindsay MA (2002) Peptide-mediated cell delivery: application in protein target validation. Curr Opin Pharmacol 2:587–594.  https://doi.org/10.1016/S1471-4892(02)00199-6 CrossRefPubMedGoogle Scholar
  86. Liu GW, Livesay BR, Kacherovsky NA et al (2015) Efficient identification of murine M2 macrophage peptide targeting ligands by phage display and next-generation sequencing. Bioconjug Chem 26:1811–1817.  https://doi.org/10.1021/acs.bioconjchem.5b00344 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Lundquist P, Artursson P (2016) Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 106:256–276.  https://doi.org/10.1016/j.addr.2016.07.007 CrossRefPubMedGoogle Scholar
  88. Ma H, Yu P, Shen S, Xu B (2014) A dual functional fluorescent probe for glioma imaging mediated by BBB penetration and glioma cell targeting. Biochem Biophys Res Commun 449:44–48.  https://doi.org/10.1016/j.bbrc.2014.04.148 CrossRefPubMedGoogle Scholar
  89. Mahmood A, Prüfert F, Efiana NA et al (2016) Cell-penetrating self-nanoemulsifying drug delivery systems (SNEDDS) for oral gene delivery. Expert Opin Drug Deliv 13:1503–1512.  https://doi.org/10.1080/17425247.2016.1213236 CrossRefPubMedGoogle Scholar
  90. Malcor JD, Payrot N, David M et al (2012) Chemical optimization of new ligands of the low-density lipoprotein receptor as potential vectors for central nervous system targeting. J Med Chem.  https://doi.org/10.1021/jm2014919 CrossRefPubMedGoogle Scholar
  91. Matochko WL, Derda R (2015) Next-generation sequencing of phage-displayed peptide libraries. Methods Mol Biol 1248:249–266.  https://doi.org/10.1007/978-1-4939-2020-4_17 CrossRefPubMedGoogle Scholar
  92. Maussang D, Rip J, van Kregten J et al (2016) Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. Drug Discov Today Technol 20:59–69.  https://doi.org/10.1016/j.ddtec.2016.09.003 CrossRefPubMedGoogle Scholar
  93. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583–592.  https://doi.org/10.1038/nrc1893 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Mohamadzadeh M, Duong T, Sandwick SJ et al (2009) Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge. Proc Natl Acad Sci 106:4331–4336.  https://doi.org/10.1073/pnas.0900029106 CrossRefPubMedGoogle Scholar
  95. Morishita M, Peppas NA (2006) Is the oral route possible for peptide and protein drug delivery? Drug Discov Today 11:905–910.  https://doi.org/10.1016/j.drudis.2006.08.005 CrossRefPubMedGoogle Scholar
  96. Morishita M, Morishita I, Takayama K et al (1993) Site-dependent effect of aprotinin, sodium caprate, Na2EDTA and sodium glycocholate on intestinal absorption of insulin. Biol Pharm Bull 16:68–72.  https://doi.org/10.1248/bpb.16.68 CrossRefPubMedGoogle Scholar
  97. Morishita M, Kamei N, Ehara J et al (2007) A novel approach using functional peptides for efficient intestinal absorption of insulin. J Control Release 118:177–184.  https://doi.org/10.1016/j.jconrel.2006.12.022 CrossRefPubMedGoogle Scholar
  98. Moroz E, Matoori S, Leroux JC (2016) Oral delivery of macromolecular drugs: where we are after almost 100 years of attempts. Adv Drug Deliv Rev 101:108–121.  https://doi.org/10.1016/j.addr.2016.01.010 CrossRefPubMedGoogle Scholar
  99. Murphy EA, Majeti BK, Barnes LA et al (2008) Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci USA 105:9343–9348.  https://doi.org/10.1073/pnas.0803728105 CrossRefPubMedGoogle Scholar
  100. Nakase I, Niwa M, Takeuchi T et al (2004) Cellular uptake of arginine-rich peptides: Roles for macropinocytosis and actin rearrangement. Mol Ther 10:1011–1022.  https://doi.org/10.1016/j.ymthe.2004.08.010 CrossRefPubMedGoogle Scholar
  101. Nguyen J, Hossain SS, Cooke JRN et al (2017) Flow arrest intra-arterial delivery of small TAT-decorated and neutral micelles to gliomas. J Neurooncol 133:1–9.  https://doi.org/10.1007/s11060-017-2429-5 CrossRefGoogle Scholar
  102. Nielsen EJB, Yoshida S, Kamei N et al (2014) In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. J Control Release 189:19–24.  https://doi.org/10.1016/j.jconrel.2014.06.022 CrossRefPubMedGoogle Scholar
  103. Nielsen DS, Shepherd NE, Xu W et al (2017) Orally absorbed cyclic peptides. Chem Rev 117:8094–8128.  https://doi.org/10.1021/acs.chemrev.6b00838 CrossRefPubMedGoogle Scholar
  104. O’Neill MJ, Bourre L, Melgar S, O’Driscoll CM (2011) Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discov Today 16:203–218.  https://doi.org/10.1016/j.drudis.2011.01.003 CrossRefPubMedGoogle Scholar
  105. O’Sullivan CC, Lindenberg M, Bryla C et al (2016) ANG1005 for breast cancer brain metastases: correlation between 18F-FLT–PET after first cycle and MRI in response assessment. Breast Cancer Res Treat 160:51–59.  https://doi.org/10.1007/s10549-016-3972-z CrossRefPubMedGoogle Scholar
  106. Olive KP, Jacobetz MA, Davidson CJ et al (2009) Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461.  https://doi.org/10.1126/science.1171362 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Paasonen L, Sharma S, Braun GB et al (2016) New p32/gC1qR ligands for targeted tumor drug delivery. ChemBioChem 17:570–575.  https://doi.org/10.1002/cbic.201500564 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Pang H-B, Braun GB, Friman T et al (2014) An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nat Commun 5:4904.  https://doi.org/10.1038/ncomms5904 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Pardridge WM (2006) Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol 6:494–500CrossRefGoogle Scholar
  110. Pardridge WM (2012) Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab 32:1959–1972.  https://doi.org/10.1038/jcbfm.2012.126 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Pasqualini R, Ruoslahti E (1996) Organ targeting In vivo using phage display peptide libraries. Nature 380:364–366.  https://doi.org/10.1038/380364a0 CrossRefPubMedGoogle Scholar
  112. Pasqualini R, Koivunen E, Ruoslahti E (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15:542–546.  https://doi.org/10.1038/nm0798-822 CrossRefPubMedGoogle Scholar
  113. Pasqualini R, Koivunen E, Kain R et al (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727PubMedPubMedCentralGoogle Scholar
  114. Pauletti GM, Gangwar S, Knipp GT et al (1996) Structural requirements for intestinal absorption of peptide drugs. J Control Release 41:3–17.  https://doi.org/10.1016/0168-3659(96)01352-1 CrossRefGoogle Scholar
  115. Pelaseyed T, Bergström JH, Gustafsson JK et al (2014) The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 260:8–20.  https://doi.org/10.1111/imr.12182 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153.  https://doi.org/10.1038/nri3608 CrossRefPubMedGoogle Scholar
  117. Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33.  https://doi.org/10.1038/309030a0 CrossRefPubMedGoogle Scholar
  118. Porkka K, Laakkonen P, Hoffman JA et al (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci USA 99:7444–7449.  https://doi.org/10.1073/pnas.062189599 CrossRefPubMedGoogle Scholar
  119. Prados MD, Schold SC Jr, Fine HA et al (2003) A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro Oncol 5:96–103.  https://doi.org/10.1215/S1522851702000340 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Puig-Saus C, Rojas L, Laborda E et al (2014) iRGD tumor-penetrating peptide-modified oncolytic adenovirus shows enhanced tumor transduction, intratumoral dissemination and antitumor efficacy. Gene Ther 21:767–774.  https://doi.org/10.1038/gt.2014.52 CrossRefPubMedGoogle Scholar
  121. Qosa H, Mohamed LA, Alqahtani S et al (2016) Transporters as drug targets in neurological diseases. Clin Pharmacol Ther 100:441–453.  https://doi.org/10.1002/cpt.435 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Regina A, Demeule M, Tripathy S et al (2015) ANG4043, a novel brain-penetrant peptide-mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Mol Cancer Ther 14:129–140.  https://doi.org/10.1158/1535-7163.MCT-14-0399 CrossRefPubMedGoogle Scholar
  123. Régina A, Demeule M, Ché C et al (2008) Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol 155:185–197.  https://doi.org/10.1038/bjp.2008.260 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Ren Y, Cheung HW, von Maltzhan G et al (2012) Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4. Sci Transl Med 4:147ra112–147ra112.  https://doi.org/10.1126/scitranslmed.3003778 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Renukuntla J, Vadlapudi AD, Patel A et al (2013) Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 447:75–93.  https://doi.org/10.1016/j.ijpharm.2013.02.030 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Richard JP, Melikov K, Vives E et al (2003) Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590.  https://doi.org/10.1074/jbc.M209548200 CrossRefPubMedGoogle Scholar
  127. Roth L, Agemy L, Kotamraju VR et al (2012) Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene 31:3754–3763.  https://doi.org/10.1038/onc.2011.537 CrossRefPubMedGoogle Scholar
  128. Rotman M, Welling MM, Bunschoten A et al (2015) Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer’s disease. J Control Release 203:40–50.  https://doi.org/10.1016/j.jconrel.2015.02.012 CrossRefPubMedGoogle Scholar
  129. Rousselle C, Clair P, Temsamani J, Scherrmann JM(2002).Improved brain delivery of benzylpenicillin with a peptide-vector-mediated strategy. J Drug Target. 10(4):309–315CrossRefGoogle Scholar
  130. Rubas W, Cromwell MEM, Shahrokh Z et al (1996) Flux measurements across Caco-2 monolayers may predict transport in human large intestinal tissue. J Pharm Sci 85:165–169.  https://doi.org/10.1021/js950267+ CrossRefPubMedGoogle Scholar
  131. Ruoslahti E (1996) Rgd and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715.  https://doi.org/10.1146/annurev.cellbio.12.1.697 CrossRefPubMedGoogle Scholar
  132. Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2:83–90.  https://doi.org/10.1038/nrc724 CrossRefPubMedGoogle Scholar
  133. Ruoslahti E (2003) The RGD story: a personal account. Matrix Biol 22:459–465.  https://doi.org/10.1016/S0945-053X(03)00083-0 CrossRefPubMedGoogle Scholar
  134. Ruoslahti E (2012) Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv Mater 24:3747–3756.  https://doi.org/10.1002/adma.201200454 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Ruoslahti E (2017) Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 110–111:3–12.  https://doi.org/10.1016/j.addr.2016.03.008 CrossRefPubMedGoogle Scholar
  136. Ruoslahti E, Bhatia SN, Sailor MJ (2010) Targeting of drugs and nanoparticles to tumors. J Cell Biol 188:759–768.  https://doi.org/10.1083/jcb.200910104 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Sánchez-Navarro M, Teixidó M, Giralt E (2017) Jumping hurdles: peptides able to overcome biological barriers. Acc Chem Res.  https://doi.org/10.1021/acs.accounts.7b00204 CrossRefPubMedGoogle Scholar
  138. Sato AK, Viswanathan M, Kent RB, Wood CR (2006) Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol 17:638–642CrossRefGoogle Scholar
  139. Schmithals C, Köberle V, Korkusuz H et al (2015) Improving drug penetrability with iRGD leverages the therapeutic response to sorafenib and doxorubicin in hepatocellular carcinoma. Cancer Res 75:3147–3154.  https://doi.org/10.1158/0008-5472.CAN-15-0395 CrossRefPubMedGoogle Scholar
  140. Schwarze SR (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1573.  https://doi.org/10.1126/science.285.5433.1569 CrossRefGoogle Scholar
  141. Scott Swenson E, Curatolo WJ (1992) (C) Means to enhance penetration. (2) Intestinal permeability enhancement for proteins, peptides and other polar drugs: mechanisms and potential toxicity. Adv Drug Deliv Rev 8:39–92CrossRefGoogle Scholar
  142. Sha H, Zou Z, Xin K et al (2015) Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy. J Control Release 200:188–200.  https://doi.org/10.1016/j.jconrel.2014.12.039 CrossRefPubMedGoogle Scholar
  143. Shah RB, Ahsan F, Khan MA (2002) Oral delivery of proteins: progress and prognostication. Crit Rev Ther Drug Carrier Syst 19:135–169.  https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i2.20 CrossRefPubMedGoogle Scholar
  144. Shen J, Meng Q, Sui H et al (2014) IRGD conjugated TPGS mediates codelivery of paclitaxel and survivin shRNA for the reversal of lung cancer resistance. Mol Pharm 11:2579–2591.  https://doi.org/10.1021/mp400576f CrossRefPubMedGoogle Scholar
  145. Shi Y, Jiang X, Zhang L et al (2017) Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood-brain barrier disruption after ischemic brain injury. Proc Natl Acad Sci USA 114(7), E1243–E1252 https://doi.org/10.1073/pnas.1621174114 CrossRefGoogle Scholar
  146. Smith MW, Al-Jayyoussi G, Gumbleton M (2012) Peptide sequences mediating tropism to intact blood-brain barrier: an in vivo biodistribution study using phage display. Peptides 38:172–180.  https://doi.org/10.1016/j.peptides.2012.06.019 CrossRefPubMedGoogle Scholar
  147. Staquicini FI, Ozawa MG, Moya CA et al (2011) Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J Clin Invest 121:161–173.  https://doi.org/10.1172/JCI44798 CrossRefPubMedGoogle Scholar
  148. Sugahara KN, Teesalu T, Karmali PP et al (2009) Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16:510–520.  https://doi.org/10.1016/j.ccr.2009.10.013 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Sugahara KN, Teesalu T, Karmali PP et al (2010) Coadministration of a tumor-penetrating peptdei enhances the efficacy of cancer drugs. Science 328:1031–1038.  https://doi.org/10.1007/s13398-014-0173-7.2 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E (2009) C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci 106:16157–16162.  https://doi.org/10.1073/pnas.0908201106 CrossRefPubMedGoogle Scholar
  151. Teesalu T, Sugahara KN, Ruoslahti E (2013) Tumor-penetrating peptides. Front Oncol.  https://doi.org/10.3389/fonc.2013.00216 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Teixidó M, Belda I, Zurita E et al (2005) Evolutionary combinatorial chemistry, a novel tool for SAR studies on peptide transport across the blood-brain barrier. Part 2. Design, synthesis and evaluation of a first generation of peptides. J Pept Sci 11:789–804.  https://doi.org/10.1002/psc.679 CrossRefPubMedGoogle Scholar
  153. Tian Y, Li S, Song J et al (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–2390.  https://doi.org/10.1016/j.biomaterials.2013.11.083 CrossRefPubMedGoogle Scholar
  154. Toome K, Willmore AM, Paiste P et al (2017) Ratiometric in vivo auditioning of targeted silver nanoparticles. Nanoscale.  https://doi.org/10.1039/C7NR04056C CrossRefGoogle Scholar
  155. Tozaki H, Odoriba T, Iseki T et al (1998) Use of protease inhibitors to improve calcitonin absorption from the small and large intestine in rats. J Pharm Pharmacol 50:913–920CrossRefGoogle Scholar
  156. Tremmel R, Uhl P, Helm F, Wupperfeld D et al (2016) Delivery of copper-chelating trientine (TETA) to the central nervous system by surface modified liposomes. Int J Pharm 512(1):87–95CrossRefGoogle Scholar
  157. Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83:871–932.  https://doi.org/10.1152/physrev.00001.2003 CrossRefPubMedGoogle Scholar
  158. Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261.  https://doi.org/10.1074/jbc.M006701200 CrossRefPubMedGoogle Scholar
  159. Urich E, Schmucki R, Ruderisch N et al (2015) Cargo delivery into the brain by in vivo identified transport peptides. Sci Rep 5:14104.  https://doi.org/10.1038/srep14104 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Van Rooy I, Cakir-Tascioglu S, Couraud PO et al (2010) Identification of peptide ligands for targeting to the blood-brain barrier. Pharm Res 27:673–682.  https://doi.org/10.1007/s11095-010-0053-6 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Van Rooy I, Hennink WE, Storm G et al (2012) Attaching the phage display-selected GLA peptide to liposomes: factors influencing target binding. Eur J Pharm Sci 45:330–335.  https://doi.org/10.1016/j.ejps.2011.11.015 CrossRefPubMedGoogle Scholar
  162. Vela Ramirez JE, Sharpe LA, Peppas NA (2017) Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev.  https://doi.org/10.1016/j.addr.2017.04.008 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Walter E, Kissel T, Amidon GL (1996) The intestinal peptide carrier: a potential transport system for small peptide derived drugs. Adv Drug Deliv Rev 20:33–58.  https://doi.org/10.1016/0169-409X(95)00129-U CrossRefGoogle Scholar
  164. Wang X, Zhen X, Wang J et al (2013) Doxorubicin delivery to 3D multicellular spheroids and tumors based on boronic acid-rich chitosan nanoparticles. Biomaterials 34:4667–4679.  https://doi.org/10.1016/j.biomaterials.2013.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Wang C-FC-F., Sarparanta MP, Mäkilä EM et al (2015a) Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials 48:108–118.  https://doi.org/10.1016/j.biomaterials.2015.01.008 CrossRefPubMedGoogle Scholar
  166. Wang J, Yadav V, Smart AL et al (2015b) Toward oral delivery of biopharmaceuticals: an assessment of the gastrointestinal stability of 17 peptide drugs. Mol Pharm 12:966–973.  https://doi.org/10.1021/mp500809f CrossRefPubMedGoogle Scholar
  167. Wang L, Hao Y, Li H et al (2015c) Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles. J Drug Target 2330:1–15.  https://doi.org/10.3109/1061186X.2015.1025077 CrossRefGoogle Scholar
  168. Wang Z, Zhao Y, Jiang Y et al (2015d) Enhanced anti-ischemic stroke of ZL006 by T7-conjugated PEGylated liposomes drug delivery system. Sci Rep 5:12651.  https://doi.org/10.1038/srep12651 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Wang N, Jin X, Guo D et al (2017) Iron chelation nanoparticles with delayed saturation as an effective therapy for parkinson disease. Biomacromol 18:461–474.  https://doi.org/10.1021/acs.biomac.6b01547 CrossRefGoogle Scholar
  170. Wängler C, Nada D, Höfner G et al (2011) In vitro and initial in vivo evaluation of 68 Ga-labeled transferrin receptor (TfR) binding peptides as potential carriers for enhanced drug transport into TfR expressing cells. Mol Imaging Biol 13:332–341.  https://doi.org/10.1007/s11307-010-0329-6 CrossRefPubMedGoogle Scholar
  171. Wickham TJ (2000) Targeting adenovirus. Gene Ther 7:110–114.  https://doi.org/10.1038/sj.gt.3301115 CrossRefPubMedGoogle Scholar
  172. Winer I, Wang S, Lee YEK et al (2010) F3-targeted cisplatin-hydrogel nanoparticles as an effective therapeutic that targets both murine and human ovarian tumor endothelial cells in vivo. Cancer Res 70:8674–8683.  https://doi.org/10.1158/0008-5472.CAN-10-1917 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Woodley JF (1994) Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug Carrier Syst 11:61–95PubMedGoogle Scholar
  174. Wu Y, Luo X, Liu X et al (2015) Intraperitoneal administration of a Novel TAT-BDNF peptide ameliorates cognitive impairments via modulating multiple pathways in two alzheimer’s rodent models. Sci Rep 5:15032.  https://doi.org/10.1038/srep15032 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Xia H, Anderson B, Mao Q, Davidson BL (2000) Recombinant human adenovirus: targeting to the human transferrin receptor improves gene transfer to brain microcapillary endothelium. J Virol 74:11359–11366.  https://doi.org/10.1128/jvi.74.23.11359-11366.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Yamaguchi S, Ito S, Kurogi-Hirayama M, Ohtsuki S (2017) Identification of cyclic peptides for facilitation of transcellular transport of phages across intestinal epithelium in vitro and in vivo. J Control Release 262:232–238.  https://doi.org/10.1016/j.jconrel.2017.07.037 CrossRefPubMedGoogle Scholar
  177. Yan C, Gu J, Hou D et al (2015) Improved tumor targetability of Tat-conjugated PAMAM dendrimers as a novel nanosized anti-tumor drug carrier. Drug Dev Ind Pharm 41:617–622.  https://doi.org/10.3109/03639045.2014.891127 CrossRefPubMedGoogle Scholar
  178. Yan F, Wu H, Liu H et al (2016) Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. J Control Release 224:217–228.  https://doi.org/10.1016/j.jconrel.2015.12.050 CrossRefPubMedGoogle Scholar
  179. Yao VJ, D’Angelo S, Butler KS et al (2016) Ligand-targeted theranostic nanomedicines against cancer. J Control Release 240:267–286.  https://doi.org/10.1016/j.jconrel.2016.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Yoo MK, Kang SK, Choi JH et al (2010) Targeted delivery of chitosan nanoparticles to Peyer’s patch using M cell-homing peptide selected by phage display technique. Biomaterials 31:7738–7747.  https://doi.org/10.1016/j.biomaterials.2010.06.059 CrossRefPubMedGoogle Scholar
  181. Yu KF, Zhang WQ, Luo LM et al (2013) The antitumor activity of a doxorubicin loaded, iRGD-modified sterically-stabilized liposome on B16-F10 melanoma cells: in vitro and in vivo evaluation. Int J Nanomed 8:2473–2485.  https://doi.org/10.2147/IJN.S46962 CrossRefGoogle Scholar
  182. Yun Y, Cho YW, Park K (2013) Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev 65:822–832.  https://doi.org/10.1016/j.addr.2012.10.007 CrossRefPubMedGoogle Scholar
  183. Zhang L, Song L, Zhang C, Ren Y (2012) Improving intestinal insulin absorption efficiency through coadministration of cell-penetrating peptide and hydroxypropyl-β-cyclodextrin. Carbohydr Polym 87:1822–1827.  https://doi.org/10.1016/j.carbpol.2011.10.002 CrossRefGoogle Scholar
  184. Zhang B, Sun X, Mei H et al (2013a) LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials 34:9171–9182.  https://doi.org/10.1016/j.biomaterials.2013.08.039 CrossRefPubMedGoogle Scholar
  185. Zhang C, Wan X, Zheng X et al (2013b) Biomaterials dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’ s disease mice. Biomaterials 35:1–10.  https://doi.org/10.1016/j.biomaterials.2013.09.063 CrossRefGoogle Scholar
  186. Zhang C, Zheng X, Wan X et al (2014) The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer’s disease. J Control Release 192:317–324.  https://doi.org/10.1016/j.jconrel.2014.07.050 CrossRefPubMedGoogle Scholar
  187. Zhang Q, Zhang Y, Li K et al (2015) A novel strategy to improve the therapeutic efficacy of Gemcitabine for non-small cell lung cancer by the tumor-penetrating peptide iRGD. PLoS ONE.  https://doi.org/10.1371/journal.pone.0129865 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Zhang Y, Zhai M, Chen Z et al (2017) Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Deliv 24:1045–1055.  https://doi.org/10.1080/10717544.2017.1344334 CrossRefPubMedGoogle Scholar
  189. Zhu Z, Xie C, Liu Q et al (2011) The effect of hydrophilic chain length and iRGD on drug delivery from poly(ε-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 32:9525–9535.  https://doi.org/10.1016/j.biomaterials.2011.08.072 CrossRefPubMedGoogle Scholar
  190. Zhu S, Chen S, Gao Y et al (2015) Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and engrailed secretion peptide (Sec). Drug Deliv 0:1–12.  https://doi.org/10.3109/10717544.2015.1043472 CrossRefGoogle Scholar
  191. Zong T, Mei L, Gao H et al (2014) Synergistic dual-ligand doxorubicin liposomes improve targeting and therapeutic efficacy of brain glioma in animals. Mol Pharm 11:2346–2357.  https://doi.org/10.1021/mp500057n CrossRefPubMedGoogle Scholar
  192. Zupančič O, Bernkop-Schnürch A (2017) Lipophilic peptide character—what oral barriers fear the most. J Control Release 255:242–257.  https://doi.org/10.1016/j.jconrel.2017.04.038 CrossRefPubMedGoogle Scholar
  193. Zuris JA, Thompson DB, Shu Y et al (2014) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33:73–80.  https://doi.org/10.1038/nbt.3081 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2017

Authors and Affiliations

  1. 1.Division of Molecular Pharmaceutics and Drug Delivery, College of PharmacyThe University of Texas at AustinAustinUSA

Personalised recommendations