Advertisement

Journal of Pharmaceutical Investigation

, Volume 48, Issue 6, pp 657–664 | Cite as

Sol–gel synthesis and characterization of zinc ferrite–graphene nano-hybrids for photo-catalytic degradation of the paracetamol

  • Mojtaba Rostami
  • R. Mostafa Zamani
  • K. Mozhgan Aghajanzadeh
  • Hossein Danafar
Original Article

Abstract

In this work, a kind of cubic ZnFe2O4 and ZnFe2O4–x wt% graphene (x = 1, 2, 3, 4 wt% GR) with spinel nano-structure as nano-photocatalytic activity under visible light radiation were prepared by a facile sol–gel method. The structure, surface morphology, chemical composition of nano-powders and nano-hybrids were studied using scanning electron microscopy with an energy dispersive X-ray, X-ray diffraction (XRD), Fourier transform infrared spectroscopy, photoluminescence spectra and vibrating sample magnetometer spectroscopy. XRD results showed that nano-hybrids and nano-particles all the diffraction peaks agree well with to a cubic structure of the ZnFe2O4 spinel (JCPDS No. 22-1010). The particle size of all the compositions are in the range of ∼ 85–95 nm. The ZnFe2O4 nano-powders alone is photocatalytically inactive under visible light irradiation, the combination of ZnFe2O4 nano-powders with graphene nano-sheets leads to high nano-photocatalytic activity for the degradation of Paracetamol drug under visible light irradiation.

Keywords

ZnFe2O4 Nano-photocatalytic activity Graphene nano-sheets Paracetamol 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. Ang PK, Wang S, Bao Q, Thong JT, Loh KP (2009) High-throughput synthesis of graphene by intercalation: exfoliation of graphite oxide and study of ionic screening in graphene transistor. ACS Nano 3(11):3587–3594CrossRefGoogle Scholar
  2. Berry CC, Curtis AS (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D 36(13):R198CrossRefGoogle Scholar
  3. Burghard M, Klauk H, Kern K (2009) Carbon-based field-effect transistors for nanoelectronics. Adv Mater 21(25-26):2586–2600CrossRefGoogle Scholar
  4. Chen C-H, Liang Y-H, Zhang W-D (2010) ZnFe2O4/MWCNTs composite with enhanced photocatalytic activity under visible-light irradiation. J Alloys Compd 501(1):168–172CrossRefGoogle Scholar
  5. Cheng Y, Sun H, Jin W, Xu N (2007) Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO 2 under visible light irradiation. Chem Eng J 128(2):127–133CrossRefGoogle Scholar
  6. Chu X, Chen T, Zhang W, Zheng B, Shui H (2009) Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method. Sens Actuators B 142(1):49–54CrossRefGoogle Scholar
  7. Danafar H (2016) Applications of copolymeric nanoparticles in drug delivery systems. Drug Res 66(10):506–519CrossRefGoogle Scholar
  8. Danafar H (2017) Study of the composition of polycaprolactone/poly (ethylene glycol)/polycaprolactone copolymer and drug-to-polymer ratio on drug loading efficiency of curcumin to nanoparticles. Jundishapur J Nat Pharm Prod 12(1):e34179. doi: 10.5812/jjnpp.34179 Google Scholar
  9. Danafar H, Rostamizadeh K, Davaran S, Hamidi M (2017a) Co-delivery of hydrophilic and hydrophobic drugs by micelles: a new approach using drug conjugated PEG–PCLNanoparticles. Drug Dev Ind Pharm 43(11):1908–1918CrossRefGoogle Scholar
  10. Danafar H, Rostamizadeh K, Davaran S, Hamidi M (2017b) Drug-conjugated PLA–PEG–PLA copolymers: a novel approach for controlled delivery of hydrophilic drugs by micelle formation. Pharm Dev Technol 22(8):947–957CrossRefGoogle Scholar
  11. Davidson D, Eastham W (1966) Acute liver necrosis following overdose of paracetamol. Br Med J 2(5512):497CrossRefGoogle Scholar
  12. Fan Z-J, Kai W, Yan J, Wei T, Zhi L-J, Feng J et al (2010) Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5(1):191–198CrossRefGoogle Scholar
  13. Gharebaghi F, Dalali N, Ahmadi E, Danafar H (2017) Preparation of wormlike polymeric nanoparticles coated with silica for delivery of methotrexate and evaluation of anticancer activity against MCF7 cells. J Biomater Appl 31(9):1305–1316CrossRefGoogle Scholar
  14. Ikehata K, Naghashkar Jodeiri, N., & Gamal El-Din M (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone 28(6):353–414CrossRefGoogle Scholar
  15. Jiang J, Zhao K, Xiao X, Zhang L (2012) Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J Am Chem Soc 134(10):4473–4476CrossRefGoogle Scholar
  16. Khan LR, Oniscu GC, Powell JJ (2010) Long-term outcome following liver transplantation for paracetamol overdose. Transplant Int 23(5):524–529CrossRefGoogle Scholar
  17. Laokul P, Amornkitbamrung V, Seraphin S, Maensiri S (2011) Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution. Curr Appl Phys 11(1):101–108CrossRefGoogle Scholar
  18. Lauterburg BH, Corcoran GB, Mitchell JR (1983) Mechanism of action of N-acetylcysteine in the protection against the hepatotoxicity of acetaminophen in rats in vivo. J Clin Invest 71(4):980CrossRefGoogle Scholar
  19. Li S, Li H, Liu J, Zhang H, Yang Y, Yang Z et al. (2015) Highly efficient degradation of organic dyes by palladium nanoparticles decorated on 2D magnetic reduced graphene oxide nanosheets. Dalton Trans 44(19):9193–9199CrossRefGoogle Scholar
  20. Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9(12):9243–9257CrossRefGoogle Scholar
  21. Nomani A, Nosrati H, Manjili HK, Khesalpour L, Danafar H (2017) Preparation and characterization of copolymeric polymersomes for protein delivery. Drug Res 67(08):458–465CrossRefGoogle Scholar
  22. Nosrati H, Salehiabar M, Davaran S, Ramazani A, Manjili HK, Danafar H (2017). New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Res Chem Intermediates, doi: 10.1007/s11164-017-3084-3 Google Scholar
  23. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  24. O’Brien CJ, Rák Z, Brenner DW (2014) Calculated stability and structure of nickel ferrite crystal surfaces in hydrothermal environments. J Phys Chem C 118(10):5414–5423CrossRefGoogle Scholar
  25. Palipane N, Jiad E, de Wolff JF (2015) Paracetamol overdose. Br J Hosp Med 76(2):C18–C22CrossRefGoogle Scholar
  26. Sakamoto J, van Heijst J, Lukin O, Schlüter AD (2009) Two-dimensional polymers: just a dream of synthetic chemists? Angew Chem Int Ed 48(6):1030–1069CrossRefGoogle Scholar
  27. Saner B, Okyay F, Yürüm Y (2010) Utilization of multiple graphene layers in fuel cells. 1. An improved technique for the exfoliation of graphene-based nanosheets from graphite. Fuel 89(8):1903–1910CrossRefGoogle Scholar
  28. Shaabani A, Nosrati H, Seyyedhamzeh M (2015) Cellulose@ Fe2O3 nanoparticle composites: magnetically recyclable nanocatalyst for the synthesis of 3-aminoimidazo [1, 2-a] pyridines. Res Chem Intermed 41(6):3719–3727CrossRefGoogle Scholar
  29. Shemer H, Kunukcu YK, Linden KG (2006) Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere 63(2):269–276CrossRefGoogle Scholar
  30. Venkatasubbu GD, Ramasamy S, Ramakrishnan V, Kumar J (2013) Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery. Adv Powder Technol 24(6):947–954CrossRefGoogle Scholar
  31. Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J et al (2010) Ternary self-assembly of ordered metal oxide–graphene nanocomposites for electrochemical energy storage. ACS Nano 4(3):1587–1595CrossRefGoogle Scholar
  32. Xu S, Feng D, Shangguan W (2009) Preparations and photocatalytic properties of visible-light-active zinc ferrite-doped TiO2 photocatalyst. J Phys Chem C 113(6):2463–2467CrossRefGoogle Scholar
  33. Yuan W-H, Li B-Q, Li L (2011) Superior graphene for hydrogen adsorption prepared by the improved liquid oxidation-reduction method. Acta Phys Chim Sin 27(9):2244–2250Google Scholar
  34. Zhai Y, Zhai J, Zhou M, Dong S (2009) Ordered magnetic core–manganese oxide shell nanostructures and their application in water treatment. J Mater Chem 19(38):7030–7035CrossRefGoogle Scholar
  35. Zhang G-Y, Sun Y-Q, Gao D-Z, Xu Y-Y (2010) Quasi-cube ZnFe2O4 nanocrystals: hydrothermal synthesis and photocatalytic activity with TiO2 (Degussa P25) as nanocomposite. Mater Res Bull 45(7):755–760CrossRefGoogle Scholar
  36. Zhu J, Zeng G, Nie F, Xu X, Chen S, Han Q, Wang X (2010) Decorating graphene oxide with CuO nanoparticles in a water–isopropanol system. Nanoscale 2(6):988–994CrossRefGoogle Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2017

Authors and Affiliations

  • Mojtaba Rostami
    • 1
  • R. Mostafa Zamani
    • 2
  • K. Mozhgan Aghajanzadeh
    • 2
  • Hossein Danafar
    • 3
    • 4
  1. 1.Inter Islamic Network on Science and Technology Parks in GuilanRashtIran
  2. 2.Department of Pharmaceutical Biomaterials, School of PharmacyZanjan University of Medical SciencesZanjanIran
  3. 3.Zanjan Pharmaceutical Nanotechnology Research CenterZanjan University of Medical SciencesZanjanIran
  4. 4.Department of Medicinal Chemistry and Pharmaceutical Nanotechnology, School of PharmacyZanjan University of Medical SciencesZanjanIran

Personalised recommendations