Journal of Pharmaceutical Investigation

, Volume 48, Issue 6, pp 639–655 | Cite as

Constructing novel chimeric DNA vaccine against Salmonella enterica based on SopB and GroEL proteins: an in silico approach

  • Tayebeh Farhadi
  • Seyed MohammadReza Hashemian
Original Article


Salmonella enterica is an important enteric pathogen that causes intestinal and systemic infections in warm-blooded animals. Due to different problems caused by administration of live attenuated vaccines, a DNA vaccine that is protective against S. enterica is desirable. By combining conserved antigenic determinant into a single vaccine, cross-protective immunity against many different immunogenic serovars can be achieved. This study proposed an in silico approach by assembling antigenic and conserved regions of SopB and GroEL proteins of S. enterica to induce multi-epitopic responses against the pathogen. In total, two unique and reliable antigenic regions of each protein were found and assembled in a chimeric DNA construct fused using appropriate linkers. Epitope predictions showed that the hypothetical synthetic construct could induce B and T-cell epitopes that yield a high immune response. Most regions of the chimeric construct were predicted to have high antigenic propensity and surface accessibility. The three-dimensional structure of the construct was generated and validated as a proper model which may define reliability, structural quality and conformation. DNA vaccine could cause concentration and increasing immune responses to critical epitopes and decrease adverse effects of vaccination. Successful in silico modeling has shown to be a promising approach to design robust vaccine targeting SopB and GroEL proteins of S. enterica.


Salmonella Epitope SopB GroEL Vaccine 


Compliance with ethical standards

Conflict of interest

Tayebeh Farhadi and Seyed MohammadReza Hashemian declare that they have no conflict of interest.

Statement of human and animal right

This article does not contain any studies with human or animal subject performed by the author.

Supplementary material

40005_2017_360_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 34 KB)
40005_2017_360_MOESM2_ESM.doc (36 kb)
Supplementary material 2 (DOC 35 KB)
40005_2017_360_MOESM3_ESM.doc (1 mb)
Supplementary material 3 (DOC 1028 KB)
40005_2017_360_MOESM4_ESM.doc (496 kb)
Supplementary material 4 (DOC 496 KB)
40005_2017_360_MOESM5_ESM.doc (131 kb)
Supplementary material 5 (DOC 131 KB)
40005_2017_360_MOESM6_ESM.doc (406 kb)
Supplementary material 6 (DOC 405 KB)
40005_2017_360_MOESM7_ESM.doc (2.5 mb)
Supplementary material 7 (DOC 2607 KB)
40005_2017_360_MOESM8_ESM.doc (3.8 mb)
Supplementary material 8 (DOC 3869 KB)
40005_2017_360_MOESM9_ESM.doc (1.4 mb)
Supplementary material 9 (DOC 1482 KB)
40005_2017_360_MOESM10_ESM.doc (1.3 mb)
Supplementary material 10 (DOC 1331 KB)
40005_2017_360_MOESM11_ESM.doc (54 kb)
Supplementary material 11 (DOC 54 KB)
40005_2017_360_MOESM12_ESM.doc (33 kb)
Supplementary material 12 (DOC 33 KB)
40005_2017_360_MOESM13_ESM.doc (56 kb)
Supplementary material 13 (DOC 55 KB)
40005_2017_360_MOESM14_ESM.doc (52 kb)
Supplementary material 14 (DOC 52 KB)
40005_2017_360_MOESM15_ESM.doc (1.6 mb)
Supplementary material 15 (DOC 1642 KB)
40005_2017_360_MOESM16_ESM.doc (30 kb)
Supplementary material 16 (DOC 30 KB)
40005_2017_360_MOESM17_ESM.doc (166 kb)
Supplementary material 17 (DOC 166 KB)
40005_2017_360_MOESM18_ESM.doc (284 kb)
Supplementary material 18 (DOC 284 KB)
40005_2017_360_MOESM19_ESM.doc (2 mb)
Supplementary material 19 (DOC 2068 KB)
40005_2017_360_MOESM20_ESM.doc (32 kb)
Supplementary material 20 (DOC 31 KB)
40005_2017_360_MOESM21_ESM.doc (58 kb)
Supplementary material 21 (DOC 57 KB)
40005_2017_360_MOESM22_ESM.doc (388 kb)
Supplementary material 22 (DOC 388 KB)


  1. Amara RR, Villinger F, Altman JD, Lydy SL, O’Neil SP, Staprans SI et al (2002) Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Vaccine 20(15):1949–1955CrossRefGoogle Scholar
  2. Angamuthu K, Piramanayagam S (2017) Evaluation of In silico protein secondary structure prediction methods by employing statistical techniques. Biomed Biotechnol Res J 1:29–23CrossRefGoogle Scholar
  3. Ansari HR, Raghava GPS (2010) Identification of 755 conformational B-cell Epitopes in an antigen from its primary sequence. Immunome Res 6:6CrossRefGoogle Scholar
  4. Arai R, Ueda H, Kitayama A, Kamiya N, Nagamune T (2001) Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng 14:529–532CrossRefGoogle Scholar
  5. Arai R, Wriggers W, Nishikawa Y, Nagamune T, Fujisawa T (2004) Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering. Proteins 57:829–838CrossRefGoogle Scholar
  6. Balen B, Krsnik-Rasol M (2007) N-glycosylation of recombinant therapeutic glycoproteins in plant systems. Food Technol Biotechnol 45:1–10Google Scholar
  7. Bashford D (2004) Macroscopic electrostatic models for protonation states in proteins. Front Biosci 9:1082–1099CrossRefGoogle Scholar
  8. Berzofsky JA, Ahlers JD, Belyakov IM (2001) Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol 1(3):209–219CrossRefGoogle Scholar
  9. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–1362CrossRefGoogle Scholar
  10. Cai C, Han L, Ji Z, Chen X, Chen Y (2003) SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucl Acids Res 31(13):3692–3697CrossRefGoogle Scholar
  11. Chan K, Baker S, Kim CC, Detweiler CS, Dougan G, Falkow S (2003) Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar typhimurium DNA microarray. J Bacteriol 185(2):553–563CrossRefGoogle Scholar
  12. Curtiss R, Xin W, Yuhua L, Kong W, Wanda SY, Gunn B et al (2010) New technologies in using recombinant attenuated Salmonella vaccine vectors. Crit Rev Immunol 30:255–270CrossRefGoogle Scholar
  13. Daugelat S, Ladel CH, Schoel B, Kaufmann SH (1994) Antigen-specific T-cell responses during primary and secondary Listeria monocytogenes infection. Infect Immun 62(5):1881–1888Google Scholar
  14. De Groot AS, Berzofsky JA (2004) From genome to vaccine-new immunoinformatics tools for vaccine design. Methods 34(4):425–428CrossRefGoogle Scholar
  15. Dowling W, Thompson E, Badger C, Mellquist JL, Garrison AR, Smith JM et al (2007) Influences of glycosylation on antigenicity, immunogenicity, and protective efficacy of ebola virus GP DNA vaccines. J Virol 81(4):1821CrossRefGoogle Scholar
  16. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS et al (2001) Intrinsically disordered protein. J Mol Graph Model 19(1):26–59CrossRefGoogle Scholar
  17. Emini EA, Hughes JV, Perlow DS, Boger J (1985) Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55(3):836–839Google Scholar
  18. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY et al (2007) Comparative protein structure modeling using MODELLER. In: Current Protocols in Protein Science. Wiley, New York. Chapter 2, Unit 2.9Google Scholar
  19. Facciponte JG, MacDonald IJ, Wang XY, Kim H, Manjili MH, Subjeck JR (2005) Heat shock proteins and scavenger receptors: role in adaptive immune response. Immunol Invest 34:325–342CrossRefGoogle Scholar
  20. Farhadi T (2017) In silico designing of peptide inhibitors against pregnane X receptor: the novel candidates to control drug metabolism. Int J Pept Res Ther. doi: 10.1007/s10989-017-9627-z Google Scholar
  21. Farhadi T, Nezafat N, Ghasemi Y (2015a) In silico phylogenetic analysis of Vibrio cholera isolates based on three housekeeping genes. Int J Comput Biol Drug Des 8(1):62–74CrossRefGoogle Scholar
  22. Farhadi T, Nezafat N, Ghasemi Y, Karimi Z, Hemmati S, Erfani N (2015b) Designing of complex multi-epitope peptide vaccine based on Omps of Klebsiella pneumoniae: an in silico approach. Int J Pept Res Ther 21(3):325–341CrossRefGoogle Scholar
  23. Farhadi T, Fakharian A, Ovchinnikov RS (2017) Virtual Screening for Potential Inhibitors of CTX-M-15 Protein of Klebsiella pneumonia. Interdiscip Sci Comput Life Sci. doi: 10.1007/s12539-017-0222-y Google Scholar
  24. George RA, Heringa J (2002) An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng 15(11):871–879CrossRefGoogle Scholar
  25. Ghose C, Verhagen JM, Chen X, Yu J, Huang Y, Chenesseau O, Kelly CP, Ho DD (2013) Toll-like receptor 5-dependent immunogenicity and protective efficacy of a recombinant fusion protein vaccine containing the nontoxic domains of Clostridium difficile toxins A and B and Salmonella enterica serovar typhimurium flagellin in a mouse model of Clostridium difficile disease. Infect Immun 81(6):2190–2196CrossRefGoogle Scholar
  26. Goulhen F, Hafezi A, Uitto VJ, Hinode D, Nakamura R, Grenier D et al (1998) Subcellular localization and cytotoxic activity of the GroEL-like protein isolated from Actinobacillus actinomycetemcomitans. Infect Immun 66(11):5307–5313Google Scholar
  27. Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18:927–974CrossRefGoogle Scholar
  28. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22(7):346–353CrossRefGoogle Scholar
  29. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  30. Hamid N, Jain SK (2008) Characterization of an outer membrane protein of Salmonella enterica serovar Typhimurium that confers protection against Typhoid. Clin Vaccine Immunol 15:1461–1471CrossRefGoogle Scholar
  31. Hegazy WAH, Hensel M (2012) Salmonella enterica as a vaccine carrier. Future Microbiol 7:111–127CrossRefGoogle Scholar
  32. Heithoff DM, Enioutina EY, Bareyan D, Daynes RA, Mahan MJ (2008a) Conditions that diminish myeloid-derived suppressor cell activities stimulate cross-protective immunity. Infect Immun 76:5191–5199CrossRefGoogle Scholar
  33. Heithoff DM, Shimp WR, Lau PW, Badie G, Enioutina EY, Daynes RA et al (2008b) Human Salmonella clinical isolates distinct from those of animal origin. Appl Environ Microbiol 74:1757–1766CrossRefGoogle Scholar
  34. Henry I, Sharp PM (2007) Predicting gene expression level from codon usage bias. Mol Biol Evol 24(1):10–12CrossRefGoogle Scholar
  35. Hess J, Gentschev I, Miko D, Welzel M, Ladel C, Goebel W et al (1996) Superior efficacy of secreted over somatic antigen display in recombinant Salmonella vaccine induced protection against listeriosis. Proc Natl Acad Sci USA 93(4):1458–1463CrossRefGoogle Scholar
  36. Hu X, Wang H, Ke H, Kuhlman B (2007) High-resolution design of a protein loop. Proc Natl Acad Sci USA 104:17668–17673CrossRefGoogle Scholar
  37. Julenius K (2007) NetCGlyc 1.0: prediction of mammalian C-mannosylation sites. Glycobiology 17(8):868–876CrossRefGoogle Scholar
  38. Kabsch W (1978) A discussion of the solution for the best rotation to relate two sets of vectors. Acta Cryst A34:827–828CrossRefGoogle Scholar
  39. Kantele A, Pakkanen SH, Siitonen A, Karttunen R, Jussi M. Kantele JM (2012) Live oral typhoid vaccine Salmonella Typhi Ty21a—a surrogate vaccine against non-typhoid salmonella? Vaccine 30:7238–7245CrossRefGoogle Scholar
  40. Kaplan W, Littlejohn TG (2001) Swiss-PDB viewer [deep view]. Brief Bioinform 2:195–197CrossRefGoogle Scholar
  41. Kiemer L, Bendtsen JD, Blom N (2005) NetAcet: prediction of N-terminal acetylation sites. Bioinformatics 21(7):1269–1270CrossRefGoogle Scholar
  42. Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276(1–2):172–174CrossRefGoogle Scholar
  43. Kowalczyk D, Ertl H (1999) Immune responses to DNA vaccines. CMLS Cell Mol Life Sci 55(5):751–770CrossRefGoogle Scholar
  44. Kozak M (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12(2):857–872CrossRefGoogle Scholar
  45. Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8:e1002829CrossRefGoogle Scholar
  46. Kukic P, Nielsen JE (2010) Electrostatics in proteins and protein ligand complexes. Future Med Chem 2(4):647–666CrossRefGoogle Scholar
  47. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132CrossRefGoogle Scholar
  48. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  49. Lewis PJ, Cox GJ, Little-vanden V, Hurk S, Babiuk LA (1997) Polynucleotide vaccines in animals: enhancing and modulating responses. Vaccine 15:861–864CrossRefGoogle Scholar
  50. Li ZA, Howard C, Kelley G, Delogu F, Collins F, Morris S (1999) Immunogenicity of DNA vaccines expressing tuberculosis proteins fused to plasminogen activator signal sequences. Infect Immun 67:4780–4786Google Scholar
  51. Litwin S, Jores R (1992) In theoretical and experimental insights into immunology. Springer, BerlinGoogle Scholar
  52. Mahan MJ, Heithoff DM, House JK (2012) Salmonella cross-protective vaccines: fast-forward to the next generation of food safety. Future Microbiol 7:805–808CrossRefGoogle Scholar
  53. McKenna AJ, Bygraves JA, Maiden MC, Feavers IM (1995) Attenuated typhoid vaccine Salmonella typhi Ty21a: fingerprinting and quality control. Microbiology 141:1993–2002CrossRefGoogle Scholar
  54. Mizel SB, Graff AH, Sriranganathan N, Ervin S, Lees CJ, Lively MO, Hantgan RR, Thomas MJ, Wood J, Bell B (2009) Flagellin-F1-V fusion protein is an effective plague vaccine in mice and two species of nonhuman primates. Clin Vaccine Immunol 16(1):21–28CrossRefGoogle Scholar
  55. Moore AC, Hill AV (2004) Progress in DNA-based heterologous prime-boost immunization strategies for malaria. Immunol Rev 199:126–143CrossRefGoogle Scholar
  56. Nagarajan GA, Balasundaram SV, Janice J, Karnam G, Eswarappa SM, Chakravortty D (2009) SopB of Salmonella enterica serovar Typhimurium is a potential DNA vaccine candidate in conjugation with live attenuated bacteria. Vaccine 27:2804–2811CrossRefGoogle Scholar
  57. Ordu E, Karaguler NG (2012) Protein engineering applications on industrially important enzymes: Candida methylica FDH as a case study. In: Kauyama P (ed) Protein engineering. InTech, Rijeka, pp 75–98Google Scholar
  58. Paliwal PK, Bansal A, Sagi SK, Mustoori Sairam S M (2011) Intra peritoneal immunization of recombinant HSP70 (DnaK) of Salmonella Typhi induces a predominant Th2 response and protective immunity in mice against lethal Salmonella infection. Vaccine 29:6532–6539CrossRefGoogle Scholar
  59. Parker JM, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25(19):5425–5432CrossRefGoogle Scholar
  60. Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152(1):163–175Google Scholar
  61. Peters B, Sidney J, Bourne P, Bui HH, Buus S, Doh G et al (2005) The design and implementation of the immune epitope database and analysis resource. Immunogenetics 57(5):326–336CrossRefGoogle Scholar
  62. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612CrossRefGoogle Scholar
  63. Porwollik S, McClelland M (2003) Lateral gene transfer in Salmonella. Microbes Infect 5(11):977–989CrossRefGoogle Scholar
  64. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219CrossRefGoogle Scholar
  65. Ranjbar MM, Ghorban K, Alavian SM, Keyvani H, Dadmanesh M, Ardakany AR et al (2013) GB virus C/hepatitis G virus envelope glycoprotein E2: computational molecular features and immunoinformatics study. Hepat Mon 13(12):e15342CrossRefGoogle Scholar
  66. Ranjbar MM, Gupta SK, Ghorban K, Nabian S, Sazmand A, Taheri M, et al (2014) Designing and modeling of complex DNAvaccine based on tropomyosin protein of Boophilus genus tick. Appl Biochem Biotechnol. doi:  10.1007/s12010-014-1245-z Google Scholar
  67. Rice J, King CA, Spellerberg MB, Fairweather N, Stevenson FK (1999) Manipulation of pathogen-derived genes to influence antigen presentation via DNA vaccines. Vaccine 17:3030–3038CrossRefGoogle Scholar
  68. Rosenberg IIM (2005) Protein analysis and purification: bench top techniques. Birkhauser, BostonGoogle Scholar
  69. Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32:W321–W326CrossRefGoogle Scholar
  70. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738CrossRefGoogle Scholar
  71. Ryan KJ, Ray CG (2004) Sherris medical microbiology. McGraw Hill, New YorkGoogle Scholar
  72. Saha S, Raghava GPS (2004) BcePred: prediction of continuous B-Cell epitopes in antigenic sequences using physico-chemical properties. In: Nicosia G, Cutello V, Bentley PJ, Timmis J (eds) Artificial immune systems. ICARIS 2004. Lecture notes in computer science, vol 3239. Springer, Berlin, HeidelbergGoogle Scholar
  73. Salazar-Gonzalez RM, Maldonado-Bernal C, Ramirez-Cruz NE, Rios-Sarabia N, Beltran-Nava J, Castanon-Gonzalez J et al (2004) Induction of cellular immune response and anti-Salmonella enterica serovar Typhi bactericidal antibodies in healthy volunteers by immunization with a vaccine candidate against typhoid fever. Immunol Lett 93:115–122CrossRefGoogle Scholar
  74. Shannon CE (1948) The mathematical theory of communication. Bell Syst Tech J 27:379–423 and 623–656CrossRefGoogle Scholar
  75. Sharp PM, Li WH (1987) The codon adaptation index–a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15(3):1281–1295CrossRefGoogle Scholar
  76. Soria-Guerra R, Moreno-Fierros L, Rosales-Mendoza S (2011) Two decades of plant based candidate vaccines: a review of the chimeric protein approaches. Plant Cell Rep 30:1367–1382CrossRefGoogle Scholar
  77. Srivastava M, Gupta SK, Abhilash PC, Singh N (2012) Structure prediction and binding sites analysis of curcin protein of Jatropha curcas using computational approaches. J Mol Model 18(7):2971–2979CrossRefGoogle Scholar
  78. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT et al (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32(10):1478–1488CrossRefGoogle Scholar
  79. Sun J, Chen M, Xu J, Luo J (2005) Relationships among stop codon usage bias, its context, isochores, and gene expression level in various eukaryotes. J Mol Evol 61(4):437–444CrossRefGoogle Scholar
  80. Sztein MB (2007) Cell-mediated immunity and antibody responses elicited by attenuated Salmonella enterica serovar Typhi strains used as live oral vaccines in humans. Clin Infect Dis 45:S15–S19CrossRefGoogle Scholar
  81. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680CrossRefGoogle Scholar
  82. Tomar N, De RK (2010) Immunoinformatics: an integrated scenario. Immunology 131(2):153–168CrossRefGoogle Scholar
  83. Tong JC, Ren EC (2009) Immunoinformatics: current trends and future directions. Drug Discov Today 14(13–14):684–689CrossRefGoogle Scholar
  84. van Gunsteren WF, Billeter SR, Eising AA, Hunenberger PH, Kruger P, Mark AE et al (1996) Biomolecular simulations: the GROMOS96 manual and user guide. vdf Hochschulverlag AG an der ETHZ Zurich, Zürich, pp 1–1042Google Scholar
  85. Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N et al (2010) The immune epitope database 2.0. Nucleic Acids Res 38:D854–D862CrossRefGoogle Scholar
  86. Wan H, Wootton JC (2000) A global compositional complexity measure for biological sequences: AT-rich and GC-rich genomes encode less complex proteins. Comput Chem 24(1):71–94CrossRefGoogle Scholar
  87. Wang S, Kong Q, Curtiss III R (2013) New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb Pathog 58:17–28CrossRefGoogle Scholar
  88. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410CrossRefGoogle Scholar
  89. Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31(13):3316–3319CrossRefGoogle Scholar
  90. Xiao S, Huang Y, Xiao Y (2003) Local complexity of protein sequences. Int J Mod Phys C 14:1191–1199CrossRefGoogle Scholar
  91. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Net Methods 12(1):7–8CrossRefGoogle Scholar
  92. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinforma 9:40CrossRefGoogle Scholar
  93. Zhang Y, Skolnick J (2004) Template-based modeling and free modeling by I-TASSER in CASP7. Proc Natl Acad Sci USA 101:7594–7599CrossRefGoogle Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2017

Authors and Affiliations

  • Tayebeh Farhadi
    • 1
  • Seyed MohammadReza Hashemian
    • 1
  1. 1.Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD)Shahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations