Advertisement

Agricultural Research

, Volume 8, Issue 4, pp 452–460 | Cite as

Varietal Response to Benzylaminopurine and Chlorocholine chloride on In Vitro Tuberization of Potato

  • Md. Sadek Hossain
  • M. Mofazzal Hossain
  • Tofazzal Hossain
  • M. Moynul Haque
  • Md. Quamruzzaman
  • Md. Dulal SarkarEmail author
Full-Length Research Article
  • 94 Downloads

Abstract

The potato varieties, Asterix, Granola and Diamant produce microtubers that are in high demand in Bangladesh. To achieve the full yield potentials of these varieties, an experiment was carried out to determine the efficient protocol for microtuberization. The results showed a wide range of variation in the response of the potato varieties to the addition of chlorocholine chloride [(2-chloroethyl)-trimethylammonium chloride] (CCC) and 6-benzylaminopurine (BAP) to the microtuberization medium. Potato varieties Asterix and Diamant were more efficient to microtuberization.

Keywords

Microtuberization Potato Benzylaminopurine Chlorocholine chloride 

References

  1. 1.
    Chandra R, Dodds JH, Tovar P (1988) In vitro tuberization in potato (Solanum tuberosum L.). Newsletter. Intl Assoc Plant Tissue Cult 55:10–20Google Scholar
  2. 2.
    De Stecco VL, Tizio R (1982) L’Action du CCC sur la tuberization de germe de pomme de terrecultivé in vitro sur une solution mineraleexempte de sucre. C.R Scéances Aca Sci 294:901–904Google Scholar
  3. 3.
    Dodds JH, Tover P, Chandra R, Estrella E, Cabello R (1988) Improved methods for in vitro tuber induction and use of in vitro tubers in seed programs, In: Symposium on improved potato planting material, Kunming, China, June 21–24, 1988. Asian Potato Association pp 157–158Google Scholar
  4. 4.
    Estrada R, Tovar P, Dodds JH (1986) Induction of in vitro tubers in a broad range of potato genotypes. Plant Cell Tissue Org Cult 7:3–10CrossRefGoogle Scholar
  5. 5.
    Ewing EE (1990) Induction of tuberization in potato. In: Vayda ME, Park WD (eds) The molecular and cellular biology of the potato. CAB International, Wallingford, pp 25–41Google Scholar
  6. 6.
    Hussey G, Stacey NJ (1984) Factors affecting the formation of in vitro tubers of potato (Solanum tuberosum). Ann Bot 53:565–578CrossRefGoogle Scholar
  7. 7.
    Kostrica P, Polreichova B, Domkarova J (1985) The use of in vitro tuber formation for the maintenance of potato genetic resources. GeneticaSlechteni 21:269–278Google Scholar
  8. 8.
    Leclerc Y, Donnelly JD, Seabrook JEA (1994) Microtuberization of layered shoots and nodal cutting of potato: the influence of growth regulators and incubation periods. Plant Cell Tissue Org Cult 37:113–120CrossRefGoogle Scholar
  9. 9.
    Mauk SC, Langille AR (1978) Physiology of tuberization in (Solanum tuberosum L.) cis-Zeatin riboside in the potato plants, its identification and changes in endogenous levels as influenced by temperature and photoperiod. Plant Physiol 62:438–442CrossRefGoogle Scholar
  10. 10.
    Mingo-Castel AM, Negm FB, Smith OE (1974) Effect of carbon dioxide and ethylene on tuberization of isolated potato stolons cultured in vitro. Plant Physiol 53:798–801CrossRefGoogle Scholar
  11. 11.
    Mingo-Castel AM, Young RE, Smith OE (1976) Kinetin induced tuberization of potato in vitro: on the mode of action of Kinetin. Plant Cell Physiol 17:557–570Google Scholar
  12. 12.
    Mitten DH, Boyes C, Cucuzza J (1988) In vitro produced microtubers of potato (Abst.). Am Potato J 65:492Google Scholar
  13. 13.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol 15:473–497CrossRefGoogle Scholar
  14. 14.
    Naik PS, Sarker D (1997) Influence of light-induced greening on storage of potato microtubers. Biol Plant 39:31–34CrossRefGoogle Scholar
  15. 15.
    Palmer CE, Barker WG (1973) Influence of ethylene and kinetin on tuberization and enzyme activity in (Solanum tuberosum L.) stolons culture in vitro. Ann Bot 37:85–93CrossRefGoogle Scholar
  16. 16.
    Palmer CE, Smith OE (1969) Effect of abscisic acid on elongation and kinetin-induced tuberization of isolated stolons of Solanum tuberosum L. Nature 221:279CrossRefGoogle Scholar
  17. 17.
    Palmer CE, Smith OE (1970) Effect of cytokinin on tuber formation on isolated stolons of Solanum tuberosum cultured in vitro. Plant Cell Physiol 11:303–314CrossRefGoogle Scholar
  18. 18.
    Parrot F (1975) Interactions des selsminéraux et de lacidegibbérellique et du CCC sur la tuberization de fragment de tige de pomme de terrecultivé in vitro. Potato Res 18:446–450CrossRefGoogle Scholar
  19. 19.
    Rosell G, Bertoldi FG, Tizio R (1987) In vitro mass tuberization as contribution to potato micropropagation. Potato Res 30:111–116CrossRefGoogle Scholar
  20. 20.
    Sattelmacher B, Marschner H (1985) A simple in vitro method to study tuber growth of Solanum tuberosum. J Plant Physiol 121:23–27CrossRefGoogle Scholar
  21. 21.
    Schilde RL, Espinosa DN, Estrada R (1984) Induction of tubers in vitro and their utilization for storage and distribution of potato germplasm. In: Trienal Conference of the European Association for Potato Research, SwitzerlandGoogle Scholar
  22. 22.
    Sharma AK, Venkatasalam EP, Singh RK (2011) Micro-tuber production behaviour of some commercially important potato (Solanum tuberosum L.) cultivars. Indian J Agric Sci 81:1008–1013Google Scholar
  23. 23.
    Stallknecht GF (1983) Application of plant growth regulators to potatoes, production and research. In: Nickel LG (ed) Plant growth regulating chemicals, 2nd edn. CRC Press, Boca Raton, pp 161–178Google Scholar
  24. 24.
    Tizio R (1969) L’action du CCC (2-Chloroethyltrimethylammonium chloride) sur la tubérization de la pomme de terre. Eur Potato J 12:3–7CrossRefGoogle Scholar
  25. 25.
    Tizio R, Blain MM (1973) Are cytokinins the specific factors for tuber formation in the potato plants? Phyton 31:3–13Google Scholar
  26. 26.
    Tizio R, Goleniowski M (1985) New evidence with gibberellin nature of the “root factor” which delays tuberization on potato sprout section cultured in vitro. C R Hebd Acad Sci 13:499–502Google Scholar
  27. 27.
    Tover P, Estrada R, Schilde-Rentschler L, Dodds JH (1985) Induction of in vitro potato tubers. CIP Circ 13:1–4Google Scholar
  28. 28.
    Vecchio V, Andrenelli L, Pagano MT, Benedettelli S (1994) Influence of photoperiod and media culture on potato microtuber production and dormancy (Abstr). Potato Res 37:440Google Scholar
  29. 29.
    Wang PJ, Hu CY (1985) Potato tissue culture and its application. In: Li PH (ed) Potato Physiology. Academic Press, Orlando, pp 503–577Google Scholar
  30. 30.
    Wang PJ, Hu CY (1982) In vitro mass tuberization and virus-free potato production in Taiwan. Am Potato J 59:33–37CrossRefGoogle Scholar
  31. 31.
    Wattimena GA, McCown B, Weis G (1983) Comparative field performance of potatoes from micro-culture. Am Potato J 60:27–33CrossRefGoogle Scholar

Copyright information

© NAAS (National Academy of Agricultural Sciences) 2019

Authors and Affiliations

  1. 1.Seed Distribution DivisionBangladesh Agricultural Development CorporationDhakaBangladesh
  2. 2.Department of HorticultureBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
  3. 3.Department of Crop BotanyBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
  4. 4.Department of AgronomyBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
  5. 5.Tasmanian Institute of AgricultureUniversity of TasmaniaLauncestonAustralia
  6. 6.Department of HorticultureSher-e-Bangla Agricultural UniversityDhakaBangladesh

Personalised recommendations