Advertisement

Agricultural Research

, Volume 5, Issue 1, pp 1–12 | Cite as

Genetic Diversity Analysis Reveals Importance of Green Revolution Gene (Sd1 Locus) for Drought Tolerance in Rice

  • Prashant Vikram
  • Suhas Kadam
  • Bikram Pratap Singh
  • You Jin lee
  • Jitendra Kumar Pal
  • Sanjay Singh
  • O. N. Singh
  • B. P. Mallikarjuna Swamy
  • Karthikeyan Thiyagarajan
  • Sukhwinder Singh
  • Nagendra K. Singh
Full-Length Research Article

Abstract

Genetic diversity analysis based on genome-wide single-nucleotide polymorphism (SNP) assay of a set of Indian rice cultivars including modern high-yielding varieties and landraces revealed two broad groups, one with “Aus” and the other with “Indica” cultivars. Marker analysis of these genotypes was carried out for three major drought tolerance QTLs as well as green revolution gene, sd1. This gene collocates with a drought QTL, qDTY 1.1 . The well-known drought-tolerant landraces or traditional varieties had the “tall” allele of the sd1 gene, indicating the possibility of close linkage, pleiotropy or both associated with this gene. Profiling of rice genotypes investigated in the present study with drought QTL markers, genome-wide SNPs, and sd1 gene reveals the importance of using multiple genes rather focusing on any single major QTL/gene for drought tolerance. Our results suggested that rice genetic improvement for rain-fed areas require enhanced use of pre-green revolution varieties.

Keywords

Drought Genetic diversity Landrace Rice 

Abbreviations

QTL

Quantitative trait loci

MAB

Marker-assisted breeding

DAS

Days after sowing

DAT

Days after transplanting

DTF

Days to 50 % flowering

PH

Plant height

BIO

Biomass

GY

Grain yield

HI

Harvest index

SSR

Simple sequence repeats

PCR

Polymerase chain reaction

Notes

Acknowledgments

The financial support of “DBT-funded QTL to variety” project is duly acknowledged. Authors also acknowledge the support of IRRI drought breeding group.

Supplementary material

40003_2015_199_MOESM1_ESM.pdf (781 kb)
Supplementary material 1 (PDF 780 kb)

References

  1. 1.
    Babu RC, Nguyen BD, Chamarerk V, Shanmugasundaram P, Chezhian P, Jeyaprakash P, Ganesh SK, Palchamy A, Sadasivam S, Sarkarung S, Wade LJ, Nguyen HT (2003) Genetic analysis of drought resistance in rice by molecular markers: association between secondary traits and field performance. Crop Sci 43:1457–1469CrossRefGoogle Scholar
  2. 2.
    Bernier J, Kumar A, Venuprasad R, Spaner D, Atlin GN (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:507–516CrossRefGoogle Scholar
  3. 3.
    Dashti H, Yazdi-Samadi B, Ghannada M, Naghavi MR, Quarri S (2007) QTL analysis for drought resistance in wheat using doubled haploid lines. Int J Agric Biol 9:98–101Google Scholar
  4. 4.
    Dixit S, Swamy BPM, Vikram P, Bernier J, Sta Cruz MT, Amante M, Atri D, Kumar A (2012) Increased drought tolerance and wider adaptability of qDTY 12.1 conferred by its interaction with qDTY 2.3 and qDTY 3.2. Mol Breed 30:1767–1779CrossRefGoogle Scholar
  5. 5.
    Ellis M, Spielmeyer W (2002) “Perfect” markers for the rice semi-dwarfing (sd-1) gene. Int Rice Res Notes 27(2):13–14Google Scholar
  6. 6.
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  7. 7.
    Frei M, Becker K (2004) Agro-biodiversity in subsistence-oriented farming systems in a Philippine upland region: nutritional considerations. Biodivers Conserv 13:1591–1610CrossRefGoogle Scholar
  8. 8.
    Ghimire KH, Quiatchon LA, Vikram P, Swamy BPM, Dixit S, Ahmed HU, Hernandez JE, Borromeo TH, Kumar A (2012) Identification and mapping of a QTL (qDTY 1.1) with a consistent effect on grain yield under drought. Feild Crops Res 131:88–96CrossRefGoogle Scholar
  9. 9.
    Gomez SM, Boopathi NM, Kumar SS, Ramasubramanian T, Chengsong Z, Jeyaprakash P, Senthil A, Babu RC (2010) Molecular mapping and location of QTLs for drought-resistance traits in indica rice (Oryza sativa L.) lines adapted to target environments. Acta Physiol Plant 32:355–364CrossRefGoogle Scholar
  10. 10.
    Gregorio GB (1997) Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP). Ph.D. thesis, University of the Philippines, Los Baños. 1997; 118 pGoogle Scholar
  11. 11.
    Kadam S, Singh K, Shukla S, Goel S, Vikram P, Pawar V, Gaikwad K, Khanna-Chopra R, Singh NK (2012) Genomic association for drought tolerance on the short arm of wheat chromosome 4B. Funct Integr Genom 12:447–464CrossRefGoogle Scholar
  12. 12.
    Kamoshita A, Babu RC, Boopathi NM, Fukai S (2008) Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rain-fed environments. Field Crops Res 109:1–23CrossRefGoogle Scholar
  13. 13.
    Khowaja FS, Norton GJ, Courtois B, Price AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10:276PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Khush G (2003) Productivity improvements in rice. Nutr Rev 61:S114–S116CrossRefPubMedGoogle Scholar
  15. 15.
    Kumar R, Venuprasad R, Atlin GN (2007) Genetic analysis of rain-fed lowland rice drought tolerance under naturally-occurring stress in eastern India: heritability and QTL effects. Field Crops Res 103:42–52CrossRefGoogle Scholar
  16. 16.
    Lafitte HR, Yongsheng G, Yan S, Li ZK (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58:169–175CrossRefPubMedGoogle Scholar
  17. 17.
    Londo JP, Chiang Y-C, Hung K-H, Chiang T-Y, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice (Oryza sativa L.). Proc Nat Acad Sci 103:9578–9583PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Masouleh A, Waters DLE, Reinke RF, Henry RJ (2009) A high throughput assay for rapid and simultaneous analysis of perfect markers for important quality and agronomic traits in rice using multiplexed MALDI-TOF mass spectrometrey. Plant Biotech J 7:355–363CrossRefGoogle Scholar
  19. 19.
    McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 9 ‘AC Domain’. Genome 48:870–883CrossRefPubMedGoogle Scholar
  20. 20.
    McNally KL, Child KL, Bohnert R, Davidson RM, Zha K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau Stokowski, Ballinger DG, Frazer KA, Cox DR, Padhukasahasram B, Bustamante CD, Weigel D, Mackill DJ, Bruskiewich RM, Tsch GR, Buell CR, Leung H, Leach JE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Nat Acad Sci 106:12273–12278PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Pandey S, Bhandari H (2009) Drought: economic costs and research implications. In: Serraj JJ, Bennett J, Hardy B (eds) Drought frontiers in rice: crop improvement for increased rain-fed production. World Scientific Publishing, Singapore, pp 3–17CrossRefGoogle Scholar
  23. 23.
    Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  25. 25.
    Pritchard JK, Wen W (2004) Documentation for the STRUCTURE software Version 2. Chicago. http://www.pritch.bsd.uchicagoedu/software/structure2_1.html
  26. 26.
    Rebetzke GJ, van Herwaarden AF, Jenkins C, Weiss M, Lewis D, Ruuska S, Tabe L, Fettell NA, Richards RA (2008) Quantitative trait loci for water-soluble carbohydrates, associations with agronomic traits in wheat. Aust J Agric Res 59:891–905CrossRefGoogle Scholar
  27. 27.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour, New YorkGoogle Scholar
  28. 28.
    SES (2002) Standard Evaluation System for Rice (SES), IRRI. 2002. Manila, Philippines, International Rice Research InstituteGoogle Scholar
  29. 29.
    Singh A, Singh PK, Singh R, Pandit A, Mahato A, Gupta DK, Tyagi K, Singh AK, Singh NK, Sharma TR (2010) SNP haplotypes of the BADH1 gene and their association with aroma in rice. Mol Breed 26(2):325–338CrossRefGoogle Scholar
  30. 30.
    Singh NK, Dalal V, Batra K, Singh BK, Chitra G et al (2007) Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes. Funct Integr Genom 7:17–35CrossRefGoogle Scholar
  31. 31.
    Srinivasachary Willocquet L, Serge S (2011) Resistance to rice sheath blight (Rhizoctonia solani Kühn) [(teleomorph: Thanatephorus cucumeris (A.B. Frank) Donk.] disease: current status and perspectives. Euphytica 178:1–22CrossRefGoogle Scholar
  32. 32.
    Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730CrossRefPubMedGoogle Scholar
  33. 33.
    Swamy BPM, Ahmed HU, Henry A, Mauleon R, Dixit S et al (2013) Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought. PLoS One 8(5):e62795CrossRefPubMedGoogle Scholar
  34. 34.
    Swamy BPM, Kumar A (2011) Sustainable rice yield in water short drought prone environments: conventional and molecular approaches. In: Teang Shui L (ed) Irrigation systems and practices in challenging environments. InTech, Croatia, pp 149–168Google Scholar
  35. 35.
    Upadhyay P, Singh VK, Neeraja CN (2011) Identification of genotype specific alleles and molecular diversity assessment of popular rice (Oryza sativa L.) varieties of India. Int J Plant Breed Genet 5:130–140CrossRefGoogle Scholar
  36. 36.
    Venuprasad R, Bool ME, Quiatchon L, Sta Cruz MT, Amante M, Atlin GN (2012) A large-effect QTL for rice grain yield under upland drought stress on chromosome 1. Mol Breed 30(1):535–547CrossRefGoogle Scholar
  37. 37.
    Venuprasad R, Dalid CO, Del Valle M, Zhao D, Espiritu M, Sta Cruz MT, Amante M, Kumar A, Atlin GN (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet 120:177–190CrossRefPubMedGoogle Scholar
  38. 38.
    Venuprasad R, Lafitte HR, Atlin GN (2007) Response to direct selection for grain yield under drought stress in rice. Crop Sci 47:285–293CrossRefGoogle Scholar
  39. 39.
    Verulkar SB, Mandal NP, Dwivedi JL, Singh BN, Sinha PK, Mahato RN, Swain P, Dongre P, Payasi D, Singh ON, Bose LK, Robin S, Babu RC, Senthil S, Jain A, Shashidhar HE, Hittalmani S, Vera Cruz C, Paris T, Hijmans R, Raman A, Haefele S, Serraj R, Atlin G, Kumar A (2010) Breeding resilient and productive rice genotypes adapted to drought-prone rain-fed ecosystems of India. Field Crops Res 117:197–208CrossRefGoogle Scholar
  40. 40.
    Vikram P, Swamy BPM, Dixit S, Ahmed HU, Sta Cruz MT, Singh AK, Ye G, Kumar A (2012) Bulk segregant analysis: an effective approach for mapping drought grain yield QTLs in rice. Field Crops Res 134:185–192CrossRefGoogle Scholar
  41. 41.
    Vikram P, Swamy BPM, Dixit S, Sta Cruz MT, Ahmed HU, Singh AK, Kumar A (2011) qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet 12:89PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Vikram P, Kumar A, Singh AK, Singh NK (2012) Rice: genomics-assisted breeding for drought tolerance. In: Tuteja N, Gill SS, Tiburico AF, Tuteja R (eds) Improving Crop Resistance to Abiotic Stress. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 715–731CrossRefGoogle Scholar
  43. 43.
    Vikram P, Swamy BPM, Dixit S, Singh R, Singh BP, Miro B, Kohli A, Kumar A (2015) Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits. Sci Rep 5:14799PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Xu K, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed 2:219–224CrossRefGoogle Scholar

Copyright information

© NAAS (National Academy of Agricultural Sciences) 2016

Authors and Affiliations

  • Prashant Vikram
    • 1
    • 4
  • Suhas Kadam
    • 2
  • Bikram Pratap Singh
    • 2
  • You Jin lee
    • 1
  • Jitendra Kumar Pal
    • 2
  • Sanjay Singh
    • 2
  • O. N. Singh
    • 3
  • B. P. Mallikarjuna Swamy
    • 1
  • Karthikeyan Thiyagarajan
    • 4
  • Sukhwinder Singh
    • 4
  • Nagendra K. Singh
    • 2
  1. 1.International Rice Research InstituteLos BanosPhilippines
  2. 2.National Research Centre for Plant BiotechnologyIARIPusa, New DelhiIndia
  3. 3.Central Rice Research InstituteCuttackIndia
  4. 4.International Center for Maize and Wheat Improvement (CIMMYT)El BatánMexico

Personalised recommendations