Advertisement

MTZ worldwide

, Volume 79, Issue 9, pp 26–33 | Cite as

Internal combustion engine 4.0

  • GÜnter Fraidl
  • Paul Kapus
  • Horst Mitterecker
  • Michael WeißbÄck
Cover Story Passenger Car Drives
  • 57 Downloads

The future RDE specifications require an evolutionary leap in internal combustion engines. A new generation of powertrains with a holistic approach and significantly enhanced functionalities is needed to meet both current and future pollutant and CO2 emission limits. In addition to powertrain electrification, further networking is also necessary to realize the “Internal Combustion Engine 4.0” described by AVL in this article.

Starting Point

The Internal Combustion Engine (ICE) is facing the most significant challenge in its more than one hundred years of history. So far, it has been seen primarily as the undisputed enabler of individual mobility. However, especially in Europe, the diesel engine’s emission issue and the exceedance of immission limits in large cities have had a lasting negative impact on its image. In addition, the uncertainty regarding possible city-access restrictions is increasingly influencing the customer’s purchasing behavior and thus not only calls into question...

References

  1. [1]
    European Parliament; Committee on the Environment; Public Health and Food Safety; Dalli, M.: DRAFT REPORT on the Proposal for a Regulation of the European Parliament and of the Council Setting Emission Performance Standards for new Passenger Cars and for new Light Commercial Vehicles as Part of the Union’s Integrated Approach to Reduce CO2 Emissions from Light-Duty Vehicles and Amending Regulation (EC) No 715/2007 (recast), (COM(2017)0676 — C8-0395/2017 — 2017/0293(COD)), 14.3.2018Google Scholar
  2. [2]
    Fraidl, G.; Kapus, P.; Mitterecker, H.; Prevedel, K.; Teuschl, G.; WeissbÄck, M.: ICE 4.0. 39th International Vienna Engine Symposium, Vienna, 2018Google Scholar
  3. [3]
    Kufferath, A.; KrÜger, M.; Naber, D.; MailÄnder, E.; Maier, R.: The Path to a Negligible NO2 Contribution from the Diesel Powertrain. 39th International Vienna Engine Symposium, Vienna, 2018Google Scholar
  4. [4]
    List, H. O.: Propulsion Systems in Transition. 39th International Vienna Engine Symposium, Vienna, 2018Google Scholar
  5. [5]
    Sams, T.; Hadl, K.; Mitterecker, H.; Wancura, H.: Thermodynamische Randbedingungen fÜr saubere und effiziente Pkw-Dieselmotoren. Arbeitsprozess des Verbrennungsmotors, Technische UniversitÄt Graz, 2017Google Scholar
  6. [6]
    K. Hadl, B. Enzi, S. Krapf, M. WeißbÄck: System Analysis for Efficient and Clean Diesel Engine. In: MTZworldwide 78 (2017), No. 07-08, pp. 38–43Google Scholar
  7. [7]
    Mitterecker, H.; Wieser, M.; Wancura, H.; WeißbÄck, M.: Diesel as an Important Component for CO2 Fleet Target Achievement. In: MTZworldwide 79 (2018), No. 07-08, pp. 38–42Google Scholar
  8. [8]
    Wancura, H.; Hadl; K.; Wieser, M.; WeißbÄck; M.; Krapf; S.; Mitterecker, H.: Highly Efficient Exhaust Gas Aftertreatment for Future Diesel Applications. Partikelforum Ludwigsburg, Ludwigsburg (Germany), 2018Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2018

Authors and Affiliations

  • GÜnter Fraidl
    • 1
  • Paul Kapus
    • 1
  • Horst Mitterecker
    • 1
  • Michael WeißbÄck
    • 1
  1. 1.AVL List GmbHGrazAustria

Personalised recommendations