, 2:134 | Cite as

Biomarker für die individualisierte Behandlung solider Tumoren

  • Andreas-Claudius Hoffmann
  • Arndt Hartmann
  • Kurt-Werner Schmid
  • Martin Schuler


In den letzten Jahren wurde durch Grundlagenforschung und translationale Forschung in der Onkologie eine Reihe von Biomarkern identifiziert, die für Diagnostik, Staging, Prognoseabschätzung und als Ansatzpunkte für individualisierte Therapien potentiellen klinischen Wert haben. Einige dieser Marker sind bereits in die klinische Praxis eingeführt, andere werden derzeit im Rahmen wissenschaftlicher Programme an Comprehensive Cancer Centers und innerhalb von Studiengruppen in ihrer Anwendung erprobt. Dieser Beitrag gibt einen Überblick über bereits klinisch etablierte Biomarker bei soliden Krebserkrankungen und einen Ausblick auf Kandidaten, die an der Schwelle zur breiten klinischen Anwendung stehen.


Biomarker Zielgerichtete Therapie Solide Tumoren 

Biomarkers for Individualized Therapy in Solid Malignancies


In recent years, basic and translational cancer research has identified several biomarkers in solid malignancies that could have potential impact on diagnosis, staging, and evaluation of prognosis of each individual patient. While some markers have already found their role in standard clinical practice, others are presently evaluated in trials conducted within the context of Comprehensive Cancer Centers and study groups. This article provides an overview of current standards and future developments in this important area of cancer medicine.

Key Words:

Biomarker Targeted therapy Solid tumors 


  1. 1.
    Bartlett JM, Munro A, Cameron DA, et al. Type 1 receptor tyrosine kinase profiles identify patients with enhanced benefit from anthracyclines in the BR9601 adjuvant breast cancer chemotherapy trial. J Clin Oncol 2008;26:5027–5035.CrossRefPubMedGoogle Scholar
  2. 2.
    Bepler G, Kusmartseva I, Sharma S, et al. RRM1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small-cell lung cancer. J Clin Oncol 2006;24:4731–4737.CrossRefPubMedGoogle Scholar
  3. 3.
    Bonneterre J, Thurlimann B, Robertson JF, et al. Anastrozole versus tamoxifen as first-line therapy for advanced breast cancer in 668 postmenopausal women: results of the Tamoxifen or Arimidex Randomized Group Efficacy and Tolerability study. J Clin Oncol 2000;18:3748–3757.PubMedGoogle Scholar
  4. 4.
    Brenner H, Hoffmeister M, Haug U. Family history and age at initiation of colorectal cancer screening. Am J Gastroenterol 2008;103:2326–2331.CrossRefPubMedGoogle Scholar
  5. 5.
    Cobo M, Isla D, Massuti B, et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J Clin Oncol 2007;25:2747–2754.CrossRefPubMedGoogle Scholar
  6. 6.
    Fuchs CS, Giovannucci EL, Colditz GA, et al. A prospective study of family history and the risk of colorectal cancer. N Engl J Med 1994;331: 1669–1674.CrossRefPubMedGoogle Scholar
  7. 7.
    Goldstein LJ, Gray R, Badve S, et al. Prognostic utility of the 21-gene assay in hormone receptor-positive operable breast cancer compared with classical clinicopathologic features. J Clin Oncol 2008;26:4063–4071.CrossRefPubMedGoogle Scholar
  8. 8.
    Knoop AS, Knudsen H, Balslev E, et al. Retrospective analysis of topoisomerase IIa amplifications and deletions as predictive markers in primary breast cancer patients randomly assigned to cyclophosphamide, methotrexate, and fluorouracil or cyclophosphamide, epirubicin, and fluorouracil: Danish Breast Cancer Cooperative Group. J Clin Oncol 2005;23:7483–7490.CrossRefPubMedGoogle Scholar
  9. 9.
    Lievre A, Bachet JB, Boige V, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 2008;26:374–379.CrossRefPubMedGoogle Scholar
  10. 10.
    Lord RV, Brabender J, Gandara D, et al. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin Cancer Res 2002;8:2286–2291.PubMedGoogle Scholar
  11. 11.
    MacGregor JI, Jordan VC. Basic guide to the mechanisms of antiestrogen action. Pharmacol Rev 1998;50:151–196.PubMedGoogle Scholar
  12. 12.
    Milano G, Etienne MC, Pierrefite V, et al. Dihydropyrimidine dehydrogenase deficiency and fluorouracil-related toxicity. Br J Cancer 1999;79: 627–630.CrossRefPubMedGoogle Scholar
  13. 13.
    Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–957.CrossRefPubMedGoogle Scholar
  14. 14.
    O’Malley FP, Chia S, Tu D, et al. Topoisomerase II alpha and responsiveness of breast cancer to adjuvant chemotherapy. J Natl Cancer Inst 2009;101: 644–650.CrossRefPubMedGoogle Scholar
  15. 15.
    Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004;351: 2817–2826.CrossRefPubMedGoogle Scholar
  16. 16.
    Rhodes A, Jasani B, Barnes DM, et al. Reliability of immunohistochemical demonstration of oestrogen receptors in routine practice: interlaboratory variance in the sensitivity of detection and evaluation of scoring systems. J Clin Pathol 2000;53:125–130.CrossRefPubMedGoogle Scholar
  17. 17.
    Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003;349:247–257.CrossRefPubMedGoogle Scholar
  18. 18.
    Schroder FH, Hugosson J, Roobol MJ, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 2009;360:1320–1328.CrossRefPubMedGoogle Scholar
  19. 19.
    Simon G, Sharma A, Li X, et al. Feasibility and efficacy of molecular analysis-directed individualized therapy in advanced non-small-cell lung cancer. J Clin Oncol 2007;25:2741–2746.CrossRefPubMedGoogle Scholar
  20. 20.
    Tanner M, Jarvinen P, Isola J. Amplification of HER-2/neu and topoisomerase IIalpha in primary and metastatic breast cancer. Cancer Res 2001;61: 5345–5348.PubMedGoogle Scholar
  21. 21.
    Valentini AM, Pirrelli M, Caruso ML. EGFR-targeted therapy in colorectal cancer: does immunohistochemistry deserve a role in predicting the response to cetuximab? Curr Opin Mol Ther 2008;10: 124–131.PubMedGoogle Scholar
  22. 22.
    Wolff AC, Hammond ME, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 2007;25:118–145.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Andreas-Claudius Hoffmann
    • 1
    • 4
  • Arndt Hartmann
    • 2
  • Kurt-Werner Schmid
    • 3
  • Martin Schuler
    • 1
  1. 1.Innere Klinik (Tumorforschung)Westdeutsches Tumorzentrum, Universitätsklinikum EssenEssenGermany
  2. 2.Pathologisches InstitutUniversitätsklinikum Erlangen-NürnbergErlangenGermany
  3. 3.Institut für Pathologie und NeuropathologieWestdeutsches Tumorzentrum, Universitätsklinikum EssenEssenGermany
  4. 4.Innere Klinik (Tumorforschung), Molekulare Onkologische Risiko-ProfilErforschung (MORE), Westdeutsches Tumorzentrum, Universitätsklinikum EssenEssenGermany

Personalised recommendations