Onkopipeline

, 2:114

Neue Therapiestrategien beim malignen Melanom

GRAND ROUNDS
  • 15 Downloads

Zusammenfassung

Immunologische Therapien beim malignen Melanom sind wichtige Pfeiler der modernen onkologischen Therapie. Dabei stehen bisher Therapien mit Interleukin-2 oder Interferon im Vordergrund. Diese Therapeutika wurden im Rahmen großer Studien untersucht, insbesondere in adjuvanten Therapiesituationen. Bei fortgeschrittener Erkrankung konnte für Interferon und Interleukin kein wesentlicher Nutzen belegt werden. Vakzinierungstherapien konnten bisher in randomisierten klinischen Studien keinen wesentlichen Vorteil für Melanompatienten zeigen. Neue immunmodulatorische Substanzen sind daher wichtige Bausteine in aktuellen Studien. Weitere immunologische Therapieansätze umfassen allogene und autologe Vakzinierungsstrategien, adoptive T-Zell-Therapie, monoklonale Antikörpertherapien gegen CTLA-4 sowie neue multimodale Ansätze. Letztere kombinieren immunologische Strategien beispielsweise mit konventioneller Chemotherapie oder Strahlentherapie. Neue zielgerichtete Therapien ermöglichen mit dem Eingriff in zelluläre Signalwege (RAS/RAF/MEK, Hedgehog-Signalweg, Hitzeschockprotein 90, mTOR, VEGFR etc.) einen weiteren Weg der spezifischen Intervention.

Schlüsselwörter:

Malignes Melanom Tumorimmunologie Zielgerichtete Therapien 

Novel Therapeutic Strategies for Malignant Melanoma

Abstract

In modern oncology, immunologic therapies form the basis in adjuvant treatment. Interleukin-2 and interferon are commonly used in adjuvant treatments, based on the results of different large trials. In metastatic disease, chemotherapy is the main treatment regimen. New immunomodulatory drugs are currently investigated in clinical trials and other immunologic therapies are pursued. Within randomized trials, therapeutic vaccination has not been efficient in melanoma patients. There are multiple other novel immunologic strategies that are currently being investigated, e.g., adoptive T cell therapies, monoclonal antibodies and multimodal therapies. The latter can be a combination therapy, e.g., with immunologic and conventional chemotherapy or radiation therapy. Targeted therapies become more and more important in malignant melanoma therapy. Ample data on mutations found in malignant melanomas is available and opens the way for directed therapy, based on the identified mutation status. Signal pathways like RAS/RAF/MEK, hedgehog signaling, heat-shock protein 90, mTOR and VEGFR can be influenced with specific drugs.

Key Words:

Malignant melanoma Immunology Targeted therapies 

Literatur

  1. 1.
    Abou-Alfa GK, Schwartz L, Ricci S, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006;24:4293–4300.CrossRefPubMedGoogle Scholar
  2. 2.
    Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol 2005;23:1147–1157.CrossRefPubMedGoogle Scholar
  3. 3.
    Atanackovic D, Altorki NK, Cao Y, et al. Booster vaccination of cancer patients with MAGE-A3 protein reveals long-term immunological memory or tolerance depending on priming. Proc Natl Acad Sci U S A 2008;105:1650–1655.CrossRefPubMedGoogle Scholar
  4. 4.
    Bazhin AV, Wiedemann N, Schnolzer M, et al. Expression of GAGE family proteins in malignant melanoma. Cancer Lett 2007;251:258–267.CrossRefPubMedGoogle Scholar
  5. 5.
    Bedikian AY, Millward M, Pehamberger H, et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Ob limersen Melanoma Study Group. J Clin Oncol 2006;24:4738–4745.CrossRefPubMedGoogle Scholar
  6. 6.
    Belli F, Testori A, Rivoltini L, et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 2002;20:4169–4180.CrossRefPubMedGoogle Scholar
  7. 7.
    Bouwhuis MG, Suciu S, Collette S, et al. Autoimmune antibodies and recurrence-free interval in melanoma patients treated with adjuvant interferon. J Natl Cancer Inst 2009;101:869–877.CrossRefPubMedGoogle Scholar
  8. 8.
    Buckwalter MR, Srivastava PK. “It is the antigen(s), stupid” and other lessons from over a decade of vaccitherapy of human cancer. Semin Immunol 2008;20:296–300.CrossRefPubMedGoogle Scholar
  9. 9.
    Bui JD, Schreiber RD. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr Opin Immunol 2007;19:203–208.CrossRefPubMedGoogle Scholar
  10. 10.
    Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med 2005;353:2135–2147.CrossRefPubMedGoogle Scholar
  11. 11.
    Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005;23:2346–2357.CrossRefPubMedGoogle Scholar
  12. 12.
    Dudley ME, Yang JC, Sherry R, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008;26:5233–5239.CrossRefPubMedGoogle Scholar
  13. 13.
    Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3:991–998.CrossRefPubMedGoogle Scholar
  14. 14.
    Eggermont AMM. Immunotherapy: Vaccine trials in melanoma — time for reflection. Nat Rev Clin Oncol 2009;6:256–258.CrossRefPubMedGoogle Scholar
  15. 15.
    Frederiksen KS, Lundsgaard D, Freeman JA, et al. IL-21 induces in vivo immune activation of NK cells and CD8(+) T cells in patients with metastatic melanoma and renal cell carcinoma. Cancer Immunol Immunother 2008;57:1439–1449.CrossRefPubMedGoogle Scholar
  16. 16.
    Fruehauf J, Lutzky J, McDermott D, et al. Axitinib (AG-013736) in patients with metastatic melanoma: a phase II study. J Clin Oncol 2008;26:abstract 9006.Google Scholar
  17. 17.
    Gogas H, Ioannovich J, Dafni U, et al. Prognostic significance of autoimmunity during treatment of melanoma with interferon. N Engl J Med 2006;354:709–718.CrossRefPubMedGoogle Scholar
  18. 18.
    Harlin H, Meng Y, Peterson AC, et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 2009;69:3077–3085.CrossRefPubMedGoogle Scholar
  19. 19.
    Hauschild A, Weichenthal M, Rass K, et al. Prospective randomized multicenter adjuvant dermatologic ooperative oncology group trial of low-dose interferon alfa-2b with or without a modified high-dose interferon alfa-2b induction phase in patients with lymph node-negative melanoma. J Clin Oncol 2009;27:3496–3502.CrossRefPubMedGoogle Scholar
  20. 20.
    Jager D, Filonenko V, Gout I, et al. NY-BR-1 is a differentiation antigen of the mammary gland. Appl Immunohistochem Mol Morphol 2007;15:77–83.CrossRefPubMedGoogle Scholar
  21. 21.
    Jager D, Karbach J, Pauligk C, et al. Humoral and cellular immune responses against the breast cancer antigen NY-BR-1: definition of two HLA-A2 restricted peptide epitopes. Cancer Immun 2005;5:11.PubMedGoogle Scholar
  22. 22.
    Jager D, Stockert E, Gure AO, et al. Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res 2001;61:2055–2061.PubMedGoogle Scholar
  23. 23.
    Jager E, Chen YT, Drijfhout JW, et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 1998;187:265–270.CrossRefPubMedGoogle Scholar
  24. 24.
    Jager E, Gnjatic S, Nagata Y, et al. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci U S A 2000;97:12198–12203.CrossRefPubMedGoogle Scholar
  25. 25.
    Jager E, Jager D, Knuth A. Antigen-specific immunotherapy and cancer vaccines. Int J Cancer 2003;106:817–820.CrossRefPubMedGoogle Scholar
  26. 26.
    Jayson G, Mullamitha S, Ton C, et al. Phase I study of CNTO 95, a fully human monoclonal antibody (mAb) to av integrins, in patients with solid tumors. J Clin Oncol 2005;23:Abstr 3113.Google Scholar
  27. 27.
    Kefford R, Millward M, Hersey P, et al. Phase II trial of tanespimycin (KOS-953), a heat shock protein-90 (Hsp90) inhibitor in patients with metastatic melanoma. J Clin Oncol 2007;25:abstract 8558.Google Scholar
  28. 28.
    Kirkwood JM, Tarhini AA, Panelli MC, et al. Next generation of immunotherapy for melanoma. J Clin Oncol 2008;26:3445–3455.CrossRefPubMedGoogle Scholar
  29. 29.
    Koebel CM, Vermi W, Swann JB, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 2007;450:903–907.CrossRefPubMedGoogle Scholar
  30. 30.
    Kruit W, Suciu S, Dreno B, et al. Immunization with recombinant MAGE-A3 protein combined with adjuvant systems AS15 or AS02B in patients with unresectable and progressive metastatic cutaneous melanoma: a randomized open-label phase II study of the EORTC Melanoma Group (16032–18031). J Clin Oncol 2008;26:abstract 9065b.Google Scholar
  31. 31.
    Linette G, Cranmer L, Hodi S, et al. A multicenter phase II study of volociximab in patients with relapsed metastatic melanoma. J Clin Oncol 2008;26:abstract 3505.Google Scholar
  32. 32.
    LoPiccolo J, Blumenthal GM, Bernstein WB, et al. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 2008;11:32–50.CrossRefPubMedGoogle Scholar
  33. 33.
    Marincola FM, White DE, Wise AP, et al. Combination therapy with interferon alfa-2a and interleukin-2 for the treatment of metastatic cancer. J Clin Oncol 1995;13:1110–1122.PubMedGoogle Scholar
  34. 34.
    Meier F, Schittek B, Busch S, et al. The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci 2005;10:2986–3001.CrossRefPubMedGoogle Scholar
  35. 35.
    Melero I, Hervas-Stubbs S, Glennie M, et al. Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 2007;7:95–106.CrossRefPubMedGoogle Scholar
  36. 36.
    Mold JE, Michaelsson J, Burt TD, et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 2008;322:1562–1565.CrossRefPubMedGoogle Scholar
  37. 37.
    Ohnmacht C, Pullner A, King SB, et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 2009:in press.Google Scholar
  38. 38.
    Pegram HJ, Jackson JT, Smyth MJ, et al. Adoptive transfer of gene-modified primary NK cells can specifically inhibit tumor progression in vivo. J Immunol 2008;181:3449–3955.PubMedGoogle Scholar
  39. 39.
    Peyton J, Spigel D, Burris H, et al. Phase II trial of bevacizumab and everolimus in the treatment of patients with metastatic melanoma: preliminary results. J Clin Oncol 2009;27:abstract 9027.Google Scholar
  40. 40.
    Plummer R, Hayward P, Lorigan V, et al. Plitidepsin alone or with dacarbazine (DTIC) as first-line treatment for advanced unresectable melanoma (AUM). J Clin Oncol 2009;27:abstract 9059.Google Scholar
  41. 41.
    Ribas A, Hanson DC, Noe DA, et al. Tremelimumab (CP-675,206), a cytotoxic T lymphocyte associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer. Oncologist 2007;12:873–883.CrossRefPubMedGoogle Scholar
  42. 42.
    Ribas A, Hauschild A, Kefford R, et al. Phase III, open-label, randomized, comparative study of tremelimumab CP-675,206 and chemotherapy temozolomide TMZ. or dacarbazine DTIC. in patients with advanced melanoma. J Clin Oncol 2008;26:abstract LBA9011.Google Scholar
  43. 43.
    Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004;10:909–915.CrossRefPubMedGoogle Scholar
  44. 44.
    Saenger YM, Wolchok JD. The heterogeneity of the kinetics of response to ipilimumab in metastatic melanoma: patient cases. Cancer Immun 2008;8:1.PubMedGoogle Scholar
  45. 45.
    Scanlan MJ, Welt S, Gordon CM, et al. Cancerrelated serological recognition of human colon cancer: identification of potential diagnostic and immunotherapeutic targets. Cancer Res 2002;62:4041–4047.PubMedGoogle Scholar
  46. 46.
    Scanlan MJ. Identification of human tumor antigens by serological analysis of recombinant cDNA expression libraries (SEREX). Curr Protoc Immunol 2005;Chapter 20:Unit 20.7.Google Scholar
  47. 47.
    Schadendorf D, Ugurel S, Schuler-Thurner B, et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 2006;17:563–570.CrossRefPubMedGoogle Scholar
  48. 48.
    Schmidt H, Bastholt L, Geertsen P, et al. Elevated neutrophil and monocyte counts in peripheral blood are associated with poor survival in patients with metastatic melanoma: a prognostic model. Br J Cancer 2005;93:273–278.CrossRefPubMedGoogle Scholar
  49. 49.
    Seront E, Machiels J. Targeted therapies in the treatment of advanced renal cell carcinoma. Recent Pat Anticancer Drug Discov 2009;4:146–156.CrossRefPubMedGoogle Scholar
  50. 50.
    Sharkey AM, Gardner L, Hiby S, et al. Killer Ig-like receptor expression in uterine NK cells is biased toward recognition of HLA-C and alters with gestational age. J Immunol 2008;181:39–46.PubMedGoogle Scholar
  51. 51.
    Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999;163:5211–5218.PubMedGoogle Scholar
  52. 52.
    Smalley KSM, Contractor R, Nguyen TK, et al. Identification of a novel subgroup of melanomas with KIT/cyclin-dependent kinase-4 overexpression. Cancer Res 2008;68:5743–5752.CrossRefPubMedGoogle Scholar
  53. 53.
    Sparano JA, Fisher RI, Sunderland M, et al. Randomized phase III trial of treatment with high-dose interleukin-2 either alone or in combination with interferon alfa-2a in patients with advanced melanoma. J Clin Oncol 1993;11:1969–1977.PubMedGoogle Scholar
  54. 54.
    Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 2002;20:395–425.CrossRefPubMedGoogle Scholar
  55. 55.
    Stauss HJ, Cesco-Gaspere M, Thomas S, et al. Monoclonal T-cell receptors: new reagents for cancer therapy. Mol Ther 2007;15:1744–1750.CrossRefPubMedGoogle Scholar
  56. 56.
    Stecca B, Mas C, Clement V, et al. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RASMEK/ AKT pathways. Proc Natl Acad Sci U S A 2007;104:5895–5900.CrossRefPubMedGoogle Scholar
  57. 57.
    Stewart JH4, Rosenberg SA. Long-term survival of anti-tumor lymphocytes generated by vaccination of patients with melanoma with a peptide vaccine. J Immunother 2000;23:401–404.CrossRefPubMedGoogle Scholar
  58. 58.
    Testori A, Richards J, Whitman E, et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100-21 Study Group. J Clin Oncol 2008;26:955–962.CrossRefPubMedGoogle Scholar
  59. 59.
    Thompson JA, Curti BD, Redman BG, et al. Phase I study of recombinant interleukin-21 in patients with metastatic melanoma and renal cell carcinoma. J Clin Oncol 2008;26:2034–2039.CrossRefPubMedGoogle Scholar
  60. 60.
    Voss R, Willemsen RA, Kuball J, et al. Molecular design of the Calphabeta interface favors specific pairing of introduced TCRalphabeta in human T cells. J Immunol 2008;180:391–401.PubMedGoogle Scholar
  61. 61.
    Weber JS, O’Day S, Urba W, et al. Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol 2008;26:5950–5956.CrossRefPubMedGoogle Scholar
  62. 62.
    Yokoe T, Tanaka F, Mimori K, et al. Efficient identification of a novel cancer/testis antigen for immunotherapy using three-step microarray analysis. Cancer Res 2008;68:1074–1082.CrossRefPubMedGoogle Scholar
  63. 63.
    Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006;6:295–307.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Medizinische Onkologie, Nationales Centrum für TumorerkrankungenUniversität HeidelbergHeidelbergGermany
  2. 2.Abteilung für Medizinische Onkologie, Nationales Centrum für TumorerkrankungenUniversität HeidelbergHeidelbergGermany

Personalised recommendations