Onkopipeline

, Volume 2, Issue 1, pp 23–29 | Cite as

Herausforderungen in der Diagnose und Behandlung von Rezidivgliomen

Neue Substanzen und Möglichkeiten des therapeutischen Einsatzes von Stammzellen
  • Markus Weiler
  • Lorna Whyte
  • Sibylle Hodecker
  • Wolfgang Wick
THERAPIE GRAND ROUNDS

Zusammenfassung

Trotz ermutigender Daten in der Primärtherapie von Glioblastompatienten mit Methylierung des Promotors der O6-Methylguanyl-Methyltransferase (MGMT) ist neben der weiteren Optimierung dieser Therapie vor allem die Entwicklung von effektiven Rezidivtherapien vordringlich. In Analogie zu präklinischen Ergebnissen wurde vermutet, dass das Verständnis molekularer prognostischer und insbesondere für eine spezifische Therapie prädiktiver Parameter eine verbesserte Patientenselektion vor Therapie- oder Studienbeginn ermögliche und damit den unselektiven Einsatz selektiv wirkender Therapien verhindere. Aktuell verfügbare molekulare Parameter sind allerdings vor allem prognostisch und nicht prädiktiv. Aktuelle multinationale Studienkonzepte bei malignen Gliomen schließen dennoch erstmals Patienten nach vorhergehender molekularer Untersuchung des 1p/19q-Status oder der Methylierung des MGMT-Promotors ein. Eine Herausforderung für neue Studien ist neben der unmittelbaren Verbesserung der Therapie die Etablierung molekularer prädiktiver Signaturen. Aufgrund der drängenden klinischen Situation und der biologischen Spezifika von hirneigenen Tumoren werden aktuell auch neuartige Konzepte wie die Entwicklung zellulärer Vehikel für die Therapie oder die Verwendung von lentiviral tranduziertem, alkylanzienresistentem Knochenmark untersucht.

Schlüsselwörter:

Hirntumoren Bevacizumab Enzastaurin Temsirolimus 

Challenges in Diagnosis and Treatment of Recurrent Glioma. Novel Compounds and Therapeutic Use of Stem Cells

Abstract

Classic chemo- or radiotherapy alone are not going to make significant impact in the future treatment of malignant glioma. A better understanding of molecular prognostic or preferentially predictive molecular markers enables an improved patient selection prior to radio- or chemotherapy and reduces the risk of unselective administration of targeted therapies. Over the past years, loss of heterozygosity on chromosomes 1p/19q in anaplastic oligodendro - glial tumors as well as analysis of promoter methylation of the O6-methylguanine-DNA methyltransferase harbored important prognostic and the latter even predictive information on the sensitivity toward an alkylating chemotherapy. Newly developed multinational studies on malignant glioma for the first time ever include patients according to molecular parameters. Novel molecular signatures as well as targeted therapeutics ask for new studies, preferentially in combination with cytotoxic chemotherapeutics or radiotherapy.

Key Words:

Brain tumors Bevacizumab Enzastaurin Temsirolimus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aboody KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A 2000;97:12846–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Batchelor TT, Sorensen AG, di Tomaso E, et al. ZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007;11:83–95.PubMedCrossRefGoogle Scholar
  3. 3.
    Benedetti S, Pirola B, Pollo B, et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 2000;6:447–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Björklund LM, Sánchez-Pernaute R, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 2002;99:2344–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Brüstle O, Jones KN, Learish RD, et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 1999;285:754–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Cavaliere R, Wen PY, Schiff D. Novel therapies for malignant gliomas. Neurol Clin 2007;25:1141–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Cloughesy TF, Prados MD, Mikkelsen T, et al. A phase II, randomized, non-comparative clinical trial of the effect of bevacizumab (BV) alone or in combination with irinotecan (CPT) on 6-month progression free survival (PFS6) in recurrent, treatment-refractory glioblastoma (GBM). J Clin Oncol 2008;26:Suppl 15:2010b.Google Scholar
  8. 8.
    Conrad C, Friedman H, Yung WKA, et al. Phase I/II trial of single-agent PTK787/ZK222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in patients with recurrent glioblastoma multiforme (GBM). J Clin Oncol 2004;22:Suppl 14:1512.Google Scholar
  9. 9.
    European Organisation for Research and Treatment of Cancer: Brain tumour group: ongoing trials (http://groups.eortc.be/brain/html/trials.html, accessed February 5, 2009).
  10. 10.
    Fine HA, Kim L, Royce C, et al. Results from phase II trial of enzastaurin (LY317615) in patients with recurrent high grade gliomas. J Clin Oncol 2005;23:Suppl 16:1504.Google Scholar
  11. 11.
    Fine HA, Puduvalli VK, Chamberlain MC, et al. Enzastaurin (ENZ) versus lomustine (CCNU) in the treatment of recurrent, intracranial glioblastoma multiforme (GBM): a phase III study. J Clin Oncol 2008;26:Suppl 15:2005.Google Scholar
  12. 12.
    Glas M, Happold C, Rieger J, et al. Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide. J Clin Oncol 2009:in press (Epub 2009 Feb 02).Google Scholar
  13. 13.
    Happold C, Roth P, Wick W, et al. ACNU-based chemotherapy for recurrent glioma in the temozolomide era. J Neurooncol 2009;92:45–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Hatten ME. The role of migration in central nervous system neuronal development. Curr Opin Neurobiol 1993;3:38–44.PubMedCrossRefGoogle Scholar
  15. 15.
    Hegi ME, Diserens A-C, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:997–1003.PubMedCrossRefGoogle Scholar
  16. 16.
    Herrlinger U, Rieger J, Koch D, et al. UKT-03 phase II trial of CCNU plus temozolomide chemotherapy in addition to radiotherapy in newly diagnosed glioblastoma. J Clin Oncol 2006;24:4412–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Kabbinavar F, Irl C, Zurlo A, et al. Bevacizumab improves the overall and progression-free survival of patients with metastatic colorectal cancer treated with 5-fluorouracil-based regimens irrespective of baseline risk. Oncology 2008;75:215–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim SM, Lim JY, Park SI, et al. Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res 2008;68:9614–23.PubMedCrossRefGoogle Scholar
  19. 19.
    Kreisl TN, Kim L, Moore K, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009;27:740–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Kunkel P, Ulbricht U, Bohlen P, et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 2001;61:6624–8.PubMedGoogle Scholar
  21. 21.
    Lee J, Elkahloun AG, Messina SA, et al. Cellular and genetic characterization of human adult bone marrow-derived neural stem-like cells: a potential antiglioma cellular vector. Cancer Res 2003;63:8877–89.PubMedGoogle Scholar
  22. 22.
    Macdonald DR, Cascino TL, Schold SC, et al. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990;8:1277–80.PubMedGoogle Scholar
  23. 23.
    Maron R, Vredenburgh JJ, Desjardins A, et al. Bevacizumab and daily temozolomide for recurrent glioblastoma multiforme (GBM). J Clin Oncol 2008;26:Suppl 15:abstract 2074.Google Scholar
  24. 24.
    Mathieu V, De Nève N, Le Mercier M, et al. Combining bevacizumab with temozolomide increases the antitumor efficacy of temozolomide in a human glioblastoma orthotopic xenograft model. Neoplasia 2008;10:1383–92.PubMedGoogle Scholar
  25. 25.
    Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005;353:2012–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Mirimanoff RO, Gorlia T, Mason W, et al. Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 2006;24:2563–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Norden AD, Young GS, Setayesh K, et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 2008;70:779–87.PubMedCrossRefGoogle Scholar
  28. 28.
    Quant E, Norden AD, Drappatz J, et al. Role of a second chemotherapy in recurrent malignant glioma patients who progress on a bevacizumab-containing regimen. J Clin Oncol 2008;26:Suppl 15:abstract 2008.Google Scholar
  29. 29.
    Quinn JA, Desjardins A, Weingart J, et al. Phase I trial of temozolomide plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J Clin Oncol 2005;23:7178–87.PubMedCrossRefGoogle Scholar
  30. 30.
    Raizer JJ, Abrey LE, Wen P, et al. A phase II trial of erlotinib (OSI-774) in patients (pts) with recurrent malignant gliomas (MG) not on EIAEDs. J Clin Oncol 2004;22:Suppl 14:1502.Google Scholar
  31. 31.
    Reardon D, Friedman H, Yung WKA, et al. A phase I/II trial of PTK787/ZK222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in combination with either temozolomide or lomustine for patients with recurrent glioblastoma multiforme (GBM). J Clin Oncol 2004;22:Suppl 14:1513.Google Scholar
  32. 32.
    Rich JN, Reardon DA, Peery T, et al. Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 2004;22:133–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Santisteban M, Buckner JC, Reid JM, et al. Phase II trial of two different irinotecan schedules with pharmacokinetic analysis in patients with recurrent glioma: North Central Cancer Treatment Group results. J Neurooncol 2009:in press (Epub 2008 Dec 10).Google Scholar
  34. 34.
    Shaked Y, Henke E, Roodhart JM, et al. Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell 2008;14:263–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Stupp R, Goldbrunner R, Neyns B, et al. Phase I/IIa trial of cilengitide (EMD121974) and temozolomide with concomitant radiotherapy, followed by temozolomide and cilengitide maintenance therapy in patients with newly diagnosed glioblastoma. J Clin Oncol 2007;25:Suppl 18:2000.Google Scholar
  36. 36.
    Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352:987–96.PubMedCrossRefGoogle Scholar
  37. 37.
    Sugimoto Y, Taniguchi M, Yagi T, et al. Guidance of glial precursor cell migration by secreted cues in the developing optic nerve. Development 2001;128:3321–30.PubMedGoogle Scholar
  38. 38.
    Tabatabai G, Bähr O, Möhle R, et al. Lessons from the bone marrow: how malignant glioma cells attract adult hematopoietic stem cells. Brain 2005;128:2200–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Tabatabai G, Frank B, Möhle R, et al. Irradiation and hypoxia promote homing of hematopoietic progenitor cells towards gliomas by TGF-á-dependent HIF-1à-mediated induction of CXCL12. Brain 2006;129:2426–35.PubMedCrossRefGoogle Scholar
  40. 40.
    Tabatabai G, Herrmann C, Frank B, et al. Glioma cell-mediated upregulation of CD62E on endothelial cells contributes to glioma tropism of adult hematopoietic progenitor cells. Brain 2008;131:2579–95.PubMedCrossRefGoogle Scholar
  41. 41.
    Uhl M, Aulwurm S, Wischhusen J, et al. SD-208, a novel TGF-á receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 2004;64:7954–61.PubMedCrossRefGoogle Scholar
  42. 42.
    Van den Bent MJ, Brandes A, Rampling R, et al. Randomized phase II trial of erlotinib (E) versus temozolomide (TMZ) or BCNU in recurrent glioblastoma multiforme (GBM). J Clin Oncol 2007;25:Suppl 18:2005.Google Scholar
  43. 43.
    Vredenburgh JJ, Desjardins A, Herndon JE 2nd, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007;13:1253–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Vredenburgh JJ, Desjardins A, Herndon JE 2nd, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 2007;25:4722–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med 2008;359:492–507.PubMedCrossRefGoogle Scholar
  46. 46.
    Wick A, Felsberg J, Steinbach JP, et al. Efficacy and tolerability of temozolomide in an alternating weekly regimen in patients with recurrent glioma. J Clin Oncol 2007;25:3357–61.PubMedCrossRefGoogle Scholar
  47. 47.
    Wick A, Pascher C, Wick W, et al. Rechallenge with temozolomide in recurrent gliomas. J Neurol 2009:in press.Google Scholar
  48. 48.
    Wick W, Küker W. Brain edema in neurooncology: radiological assessment and management. Onkologie 2004;27:261–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Wick W, Naumann U, Weller M. Transforming growth factor-á: a molecular target for the future therapy of glioblastoma. Curr Pharm Des 2006;12:341–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Markus Weiler
    • 1
    • 2
  • Lorna Whyte
    • 1
  • Sibylle Hodecker
    • 1
  • Wolfgang Wick
    • 1
    • 2
    • 3
  1. 1.Klinische Kooperationseinheit NeuroonkologieDeutsches KrebsforschungszentrumHeidelbergGermany
  2. 2.Abteilung NeuroonkologieUniversitätsklinikum HeidelbergHeidelbergGermany
  3. 3.Abteilung NeuroonkologieUniversitätsklinikum HeidelbergHeidelbergGermany

Personalised recommendations