Advertisement

Im Focus Onkologie

, Volume 21, Issue 12, pp 39–43 | Cite as

Adjuvante Chemotherapie ja oder nein?

Entscheidungshilfe bei frühem Brustkrebs: Genomische Signaturen

  • Ulrike NitzEmail author
Gynäkoonkologie Fortbildung
  • 16 Downloads

Anhand klassischer Prognosefaktoren lässt sich nicht vorhersagen, ob eine Patientin mit Mammakarzinom von einer adjuvanten Chemotherapie profitieren wird. Gerade bei hormonsensiblen Tumoren gewinnen genomische Signaturen für die Entscheidungsfindung an Bedeutung.

Literatur

  1. 1.
    DeSantis CE et al. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin. 2017;67(6):439–48CrossRefGoogle Scholar
  2. 2.
    Perou CM et al. Molecular portraits of human breast tumours. Nature. 2000; 406(6797):747–52CrossRefGoogle Scholar
  3. 3.
    Curigliano G et al. on behalf of the Panel Members of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2017. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer. 2017; Ann Oncol. 2017;28(8):1700–12CrossRefGoogle Scholar
  4. 4.
    Vestjens JH et al. Relevant impact of central pathology review on nodal classification in individual breast cancer patients. Ann Oncol. 2012;23(10):2561–6CrossRefGoogle Scholar
  5. 5.
    Gluz O et al. West German Study Group Phase III PlanB Trial: First Prospective Outcome Data for the 21-Gene Recurrence Score Assay and Concordance of Prognostic Markers by Central and Local Pathology Assessment. J Clin Oncol. 2016;34(20):2341–9CrossRefGoogle Scholar
  6. 6.
    Wuerstlein R et al. Abstract P6-09-10: Results of multigene assay (MammaPrint®) and molecular subtyping (BluePrint®) substantially impact treatment decision making in early breast cancer: Final analysis of the WSG PRIME decision impact study. Cancer Res. 2017; https://doi.org/10.1158/1538-7445. SABCS16-P6-09-10Google Scholar
  7. 7.
    Baehner FL et al. P1-07-11: Consistency and Control in Clinical Assay Technology over Time: The Oncotype DX Recurrence Score and Assessment of Single Gene Expression Levels. Cancer Res. 2011; https://doi. org/10.1158/0008-5472.SABCS11-P1-07-11 P1-07-11Google Scholar
  8. 8.
    Harbeck N et al. Molecular and protein markers for clinical decision making in breast cancer: today and tomorrow. Cancer Treat Rev. 2014;40(3):434–44CrossRefGoogle Scholar
  9. 9.
    Sestak I et al. Prediction of late distant recurrence after 5 years of endocrine treatment: a combined analysis of patients from the Austrian breast and colorectal cancer study group 8 and arimidex, tamoxifen alone or in combination randomized trials using the PAM50 risk of recurrence score. J Clin Oncol. 2015;33(8):916–22CrossRefGoogle Scholar
  10. 10.
    Sestak I et al. Abstract S6-05: Comprehensive comparison of prognostic signatures for breast cancer in TransATAC. Cancer Res. 2017; https://doi.org/10.1158/1538-7445. SABCS16-S6-05Google Scholar
  11. 11.
    Varga Z et al. Comparison of EndoPredict and Oncotype DX test results in hormone receptor positive invasive breast cancer. PLoS One. 2013;8(3):e58483CrossRefGoogle Scholar
  12. 12.
    van ’t Veer LJ et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6CrossRefGoogle Scholar
  13. 13.
    Cardoso F et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. N Engl J Med. 2016;375(8):717–29CrossRefGoogle Scholar
  14. 14.
    Paik S et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26CrossRefGoogle Scholar
  15. 15.
    Albain KS et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 2010;11(1):55–65Google Scholar
  16. 16.
    Sparano JA et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N Engl J Med. 2018;379(2):111–21.CrossRefGoogle Scholar
  17. 17.
    Sparano JAet al. Prospective Validation of a 21-Gene Expression Assay in Breast Cancer. N Engl J Med. 2015;373(21):2005–14CrossRefGoogle Scholar
  18. 18.
    Gluz O et al. Prognostic impact of recurrence score (RS), grade/Ki67 central pathological review, and anthracycline (A)-free vs. A-containing chemotherapy (CT) on distant and locoreginal disease-free survival (DDFS/ LRFS) in high clinical risk HER2- early breast cancer (EBC): WSG Plan B trial results. Ann Oncol. 2017; 28(suppl_5):Abstr LBA11Google Scholar
  19. 19.
    Nitz U et al. Reducing chemotherapy use in clinically high-risk, genomically low-risk pN0 and pN1 early breast cancer patients: five-year data from the prospective, randomised phase 3 West German Study Group (WSG) PlanB trial. Breast Cancer Res Treat. 2017;165(3):573–83CrossRefGoogle Scholar
  20. 20.
    Stemmer SM et al. Clinical outcomes in patients with node-negative breast cancer treated based on the recurrence score results: evidence from a large prospectively designed registry. NPJ Breast Cancer. 2017;3:33CrossRefGoogle Scholar
  21. 21.
    Petkov VI et al. Breast-cancer-specific mortality in patients treated based on the 21- gene assay: a SEER population-based study. NPJ Breast Cancer. 2016;2:16017.CrossRefGoogle Scholar
  22. 22.
    Robertson JFR et al. Abstract GS1-03: Peri-operative aromatase inhibitor treatment in determining or predicting longterm outcome in early breast cancer — The POETIC* Trial (CRUK/07/015). Cancer Res. 2018. https://doi.org/10.1158/1538-7445.SABCS17-GS1-03Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Brustzentrum NiederrheinMönchengladbachDeutschland

Personalised recommendations