Im Focus Onkologie

, Volume 20, Issue 12, pp 28–31 | Cite as

Neue Strategie für refraktäre Krebserkrankungen

Anakoinosis: kommunikative Netzwerke im Tumorsystem reprogrammieren

  • Daniel Heudobler
  • Michael Rechenmacher
  • Martin Vogelhuber
  • Simone Thomas
  • Tobias Pukrop
  • Christina Hackl
  • Lina Ghibelli
  • Christopher Gerner
  • Wolfgang Herr
  • Albrecht ReichleEmail author
Allgemeine Onkologie Fortbildung

Sind metastasierte, refraktäre Krebserkrankungen resistent gegenüber etablierten Tumortherapien, könnte eine biomodulatorische Therapie eine Chance auf anhaltende Remissionen bieten. Dieser palliative Ansatz basiert auf der „kommunikativen Reprogrammierung“ von Tumorsystemen, Anakoinosis genannt. Dabei werden Kommunikationswege der Tumorzellen mit ihrer Umgebung so verändert, dass die entarteten Zellen in den programmierten Zelltod gehen.


  1. 1.
    Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 2007;13(14):4042–45.CrossRefPubMedGoogle Scholar
  2. 2.
    Reichle A, Hildebrandt GC. Principles of modular tumor therapy. Cancer Microenviron. 2009;2(Suppl 1):227–37.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Reichle A. Tumor Systems Need to be Rendered Usable for a New Action-Theoretical Abstraction: The Starting Point for Novel Therapeutic Options. Curr Cancer Ther Rev. 2009;5(4):232–42.CrossRefGoogle Scholar
  4. 4.
    Hendrix MJC et al. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer. 2007;7(4):246–55.CrossRefPubMedGoogle Scholar
  5. 5.
    Berger AH et al. A continuum model for tumour suppression. Nature. 2011;476(7359):163–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pan XY et al. Application of Cancer Cell Reprogramming Technology to Human Cancer Research. Anticancer Res. 2017;37(7):3367–77.CrossRefPubMedGoogle Scholar
  7. 7.
    Reichle A, Vogt T. Systems biology: a therapeutic target for tumor therapy. Cancer Microenviron. 2008;1(1):159–70.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kopetz S et al. Phase II Pilot Study of Vemurafenib in Patients With Metastatic BRAFMutated Colorectal Cancer. J Clin Oncol. 2015;33(34):4032–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hart C et al. Anakoinosis: Communicative Reprogramming of Tumor Systems — for Rescuing from Chemorefractory Neoplasia. Cancer Microenviron. 2015;8(2):75–92.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Coyle C et al. Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Ann Oncol. 2016;27(12):2184–95.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bertolini F et al. Drug repurposing in oncology—patient and health systems opportunities. Nat Rev Clin Oncol. 2015;12(12):732–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Bittenbring JT et al. Vitamin D deficiency impairs rituximab-mediated cellular cytotoxicity and outcome of patients with diffuse large B-cell lymphoma treated with but not without rituximab. J Clin Oncol. 2014;32(29):3242–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Herold M et al. Long-term follow-up of rituximab plus first-line mitoxantrone, chlorambucil, prednisolone and interferon-alpha as maintenance therapy in follicular lymphoma. J Cancer Res Clin Oncol. 2015;141(9):1689–95.CrossRefPubMedGoogle Scholar
  14. 14.
    Hill M et al. Royal Marsden phase III trial of fluorouracil with or without interferon alfa-2b in advanced colorectal cancer. J Clin Oncol. 1995;13(6):1297–302.CrossRefPubMedGoogle Scholar
  15. 15.
    Cicconi Let al. PML-RARα kinetics and impact of FLT3-ITD mutations in newly diagnosed acute promyelocytic leukaemia treated with ATRA and ATO or ATRA and chemotherapy. Leukemia. 2016;30(10):1987–92.CrossRefPubMedGoogle Scholar
  16. 16.
    Walter I et al. Communicative reprogramming non-curative hepatocellular carcinoma with low-dose metronomic chemotherapy, COX-2 inhibitor and PPAR-gamma agonist: A phase II trial. Med Oncol. 2017;34(12):192.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rosner M et al. Human stem cells alter the invasive properties of somatic cells via paracrine activation of mTORC1. Nat Commun. 2017;8(1):595–611.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Prost S et al. Erosion of the chronic myeloid leukaemia stem cell pool by PPARγ agonists. Nature. 2015;525(7569):380–3.CrossRefPubMedGoogle Scholar
  19. 19.
    Chmielewski M et al. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev. 2014;257(1):83–90.CrossRefPubMedGoogle Scholar
  20. 20.
    Dudley JC et al. Microsatellite Instability as a Biomarker for PD-1 Blockade. Clin Cancer Res. 2016;22(4):813–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Muqaku B et al. Multi-omics Analysis of Serum Samples Demonstrates Reprogramming of Organ Functions Via Systemic Calcium Mobilization and Platelet Activation in Metastatic Melanoma. Mol Cell Proteomics. 2017;16(1):86–99.CrossRefPubMedGoogle Scholar
  22. 22.
    Smith MR et al. Rosiglitazone versus placebo for men with prostate carcinoma and a rising serum prostate-specific antigen level after radical prostatectomy and/or radiation therapy. Cancer. 2004;101(7):1569–74.CrossRefPubMedGoogle Scholar
  23. 23.
    Koutsilieris M et al. Combination therapy using LHRH and somatostatin analogues plus dexamethasone in androgen ablation refractory prostate cancer patients with bone involvement: a bench to bedside approach. Expert Opin Investig Drugs. 2006;15(7):795–804.CrossRefPubMedGoogle Scholar
  24. 24.
    Reichle A, Hildebrandt GC. The Comparative Uncovering of Tumor Systems Biology by Modularly Targeting Tumor-Associated Inflammation. In: Reichle A, ed. From molecular to modular tumor therapy. Tumors are reconstructible communicatively evolving systems. Dordrecht, Heidelberg, London, New York: Springer; 2013. p. 287–304.Google Scholar
  25. 25.
    Faiss S et al. Prospective, randomized, multicenter trial on the antiproliferative effect of lanreotide, interferon alfa, and their combination for therapy of metastatic neuroendocrine gastroenteropancreatic tumors—the International Lanreotide and Interferon Alfa Study Group. J Clin Oncol. 2003;21(14):2689–96.CrossRefPubMedGoogle Scholar
  26. 26.
    Motzer RJ et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.CrossRefPubMedGoogle Scholar
  27. 27.
    Escudier B et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370(9605):2103–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Aviles A et al. Interferon and low doses of methotrexate versus interferon and retinoids in the treatment of refractory/relapsed cutaneous T-cell lymphoma. Hematology. 2015;20(9):538–42.CrossRefPubMedGoogle Scholar
  29. 29.
    Weber DM et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med. 2007;357(21):2133–42.CrossRefPubMedGoogle Scholar
  30. 30.
    Bastion Y et al. Elderly patients with aggressive non-Hodgkin’s lymphoma: disease presentation, response to treatment, and survival—a Groupe d’Etude des Lymphomes de l’Adulte study on 453 patients older than 69 years. J Clin Oncol. 1997;15(8):2945–53.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • Daniel Heudobler
    • 1
  • Michael Rechenmacher
    • 1
  • Martin Vogelhuber
    • 1
  • Simone Thomas
    • 1
  • Tobias Pukrop
    • 1
  • Christina Hackl
    • 1
  • Lina Ghibelli
    • 2
  • Christopher Gerner
    • 3
  • Wolfgang Herr
    • 1
  • Albrecht Reichle
    • 1
    • 4
    Email author
  1. 1.RegensburgDeutschland
  2. 2.RomItalien
  3. 3.WienÖsterreich
  4. 4.Medizinische Klinik III, Hämatologie und OnkologieUniversitätsklinikum RegensburgRegensburgDeutschland

Personalised recommendations