Advertisement

Infection

pp 1–10 | Cite as

Does oral vancomycin use necessitate therapeutic drug monitoring?

  • Nevio CimolaiEmail author
Review
  • 73 Downloads

Abstract

Purpose

Oral vancomycin use has generally increased as a consequence of the need to treat and/or prevent Clostridium (Clostridiodes) difficile-associated disease (CDAD). This review examines the cumulative scientific evidence that guides therapeutic monitoring of oral vancomycin therapy.

Methods

The existing publications were reviewed from the time of the drug’s inception to July 2019. This review utilized access as available in PubMed, EMBASE, CINAHL Plus, and the Cochrane Library.

Results

Case reports and small patient series have documented anecdotal-associated elevations in serum levels. Correlation of absorbed vancomycin with subsequent toxicity is difficult to determine, but serum levels approaching those obtained after parenteral administration have raised concern. Prolonged usage and total dosing over 500 mg/day among adult age ranges have been associated with accumulation. In addition, risk factors for vancomycin accumulation systemically after oral dosing include renal compromise, combined oral and other enteral therapy, severe CDAD, other intercurrent bowel inflammation, polypharmacy, and increased patient complexity/morbidity.

Conclusion

Until systemic toxicity from oral vancomycin absorption is better understood, individual considerations should be made for therapeutic serum monitoring during oral vancomycin treatment. Therapeutic drug monitoring is suggested for several high-risk situations in which high blood levels may be anticipated.

Keywords

Vancomycin Serum level Pharmacology Therapeutics Toxicity 

Notes

Compliance with ethical standards

Conflict of interest

The author declares that he has no competing interests.

References

  1. 1.
    Cook FV, Farrar WE. Vancomycin revisited. Ann Intern Med. 1978;88:813–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Cheung RP, DiPiro JT. Vancomycin: an update. Pharmacotherapy. 1986;64:153–69.CrossRefGoogle Scholar
  3. 3.
    Nelson RL, Suda KJ, Evans CT. Antibiotic treatment for Clostridium difficile-associated diarrhoea in adults. Cochrane Database Syst Rev. 2017;3:CD004610.PubMedGoogle Scholar
  4. 4.
    Saha S, Khanna S. Management of Clostridiodes difficile colitis: insights for the gastroenterologist. Ther Adv Gastroenterol. 2019;12:1756284819847651.CrossRefGoogle Scholar
  5. 5.
    Ooijevaar RE, van Beurden YH, Terveer EM, et al. Update of treatment algorithms for Clostridium difficile infection. Clin Microbiol Infect. 2018;24:452–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Thabit AK, Alsolami MH, Baghlaf NA, et al. Comparison of three current Clostridioides difficile infection guidelines: IDSA/SHEA, ESCID, and ACG guidelines. Infection. 2019.  https://doi.org/10.1007/s15010-019-01348-9.CrossRefPubMedGoogle Scholar
  7. 7.
    Cimolai N. My difficulty with C. difficile. Br Columbia Med J. 2011;53:20–5.Google Scholar
  8. 8.
    Pichenot M, Hequette-Ruz R, Le Guern R, et al. Fidaxomicin for treatment of Clostridium difficile infection in clinical practice: a prospective cohort study in a French University Hospital. Infection. 2017;45:425–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Cox KL, Cox KM. Oral vancomycin: treatment of primary sclerosing cholangitis in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 1998;27:580–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Siu YK, Ng PC, Fung SC, et al. Double blind, randomized, placebo controlled study of oral vancomycin in prevention of necrotizing enterocolitis in preterm, very low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 1998;79:F105–9.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Rahimpour S, Nasiri-Toosi M, Khalili H, Ebrahimi-Daryani N, Nouri-Taromlou MK, Azizi Z. A triple blinded, randomized, placebo-controlled clinical trial to evaluate the efficacy and safety of oral vancomycin in primary sclerosing cholangitis: a pilot study. J Gastrointestin Liver Dis. 2016;25:457–64.PubMedGoogle Scholar
  12. 12.
    Lev-Tzion R, Ledder O, Shteyer E, Tan MLN, Uhlig HH, Turner D. Oral vancomycin and gentamicin for treatment of very early onset inflammatory bowel disease. Digestion. 2017;95:310–3.PubMedCrossRefGoogle Scholar
  13. 13.
    de Chambrun GP, Nachury M, Funakoshi N, et al. Oral vancomycin induces sustained deep remission in adult patients with ulcerative colitis and primary sclerosing cholangitis. Eur J Gasteroenterol Hepatol. 2018;30:1247–52.CrossRefGoogle Scholar
  14. 14.
    Tan LZ, Reilly CR, Steward-Harrison LC, Balouch F, Muir R, Lewindon PJ. Oral vancomycin induces clinical and mucosal remission of colitis in children with primary sclerosing cholangitis-ulcerative colitis. Gut. 2019;68:1533–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang K, Beckett P, Abouanaser S, Stankus V, Lee C, Smieja M. Prolonged oral vancomycin for secondary prophylaxis of relapsing Clostridium difficile infection. BMC Infect Dis. 2019;1:51.CrossRefGoogle Scholar
  16. 16.
    Knight EM, Schiller DS, Fulman MK, Rastogi R. Long-term efficacy or oral vancomycin prophylaxis for the prevention of Clostridium difficile recurrence. J Pharm Pract. 2019;11:897190019825994.Google Scholar
  17. 17.
    Papic N, Maric LS, Vince A. Efficacy of oral vancomycin in primary prevention of Clostridium difficile infection in elderly patients treated with systemic antibiotic therapy. Infect Dis (Lond). 2018;50:483–6.CrossRefGoogle Scholar
  18. 18.
    EORTC Gnotobiotic Project Group. EORTC Gnotobiotic Project Group: a prospective cooperative study of antimicrobial decontamination in granulocytopenic patients: comparison of two different methods. Infection. 1982;10:131–8.CrossRefGoogle Scholar
  19. 19.
    Kucers A, McK Bennett N. Vancomycin. The use of antibiotics. 3rd ed. London: William Heinemann Medical Books Ltd.; 1979. p. 646–53.Google Scholar
  20. 20.
    Griffith RS, Peck FB Jr. Vancomycin, a new antibiotic. III. Preliminary clinical and laboratory studies. In: Antibiotics annual 1955–1956, vol. 3. New York: Medical Encyclopedia, Inc. pp. 619–622.Google Scholar
  21. 21.
    Geraci JE, Heilman FR, Nichols DR, Wellman E, Ross GT. Some laboratory and clinical experiences with a new antibiotic, vancomycin. Mayo Clin Proc. 1956;31:564–82.Google Scholar
  22. 22.
    Wallace JF, Smith RH, Petersdorf RG. Oral administration of vancomycin in the treatment of staphylococcal enterocolitis. N Engl J Med. 1956;272:1014–5.CrossRefGoogle Scholar
  23. 23.
    Marrie TJ, Faulkner RS, Badley BW, Hartlen MR, Comeau SA, Miller HR. Pseudomembranous colitis: isolation of two species of cytotoxic clostridia and successful treatment with vancomycin. CMAJ. 1978;119:1058–60.Google Scholar
  24. 24.
    Modigliani R, Delchier JC. Vancomycin for antibiotic-induced colitis. Lancet. 1978;1:97–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Larson HE, Levi AJ, Borriello SP. Vancomycin for pseudomembranous colitis. Lancet. 1978;2:48.PubMedCrossRefGoogle Scholar
  26. 26.
    Tedesco F, Markham R, Gurwith M, Christie D, Bartlett JG. Oral vancomycin for antibiotic-associated pseudomembranous colitis. Lancet. 1978;2:226–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66:82–98.PubMedCrossRefGoogle Scholar
  28. 28.
    Bryan CS, White WL. Safety of oral vancomycin in functionally anephric patients. Antimicrob Agents Chemother. 1978;14:634–5.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lucas RA, Bowtle WJ, Ryden R. Disposition of vancomycin in healthy volunteers from oral solution and semi-solid matrix capsules. J Clin Pharm Ther. 1987;12:27–31.PubMedGoogle Scholar
  30. 30.
    Keighley MRB, Burdon DW, Arabi Y, et al. Randomised controlled trial of vancomycin for pseudomembranous colitis and postoperative diarrhoea. BMJ. 1978;2:1667–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Walker CA, Kopp B. Sensitive bioassay for vancomycin. Antimicrob Agents Chemother. 1978;13:30–3.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Moellering RC Jr, Krogstad DJ, Greenblatt DJ. Pharmacokinetics of vancomycin in normal subjects and in patients with reduced renal function. Rev Infect Dis. 1981;3:S230–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Matzke GR, Halstenson CE, Olson PL, Collins AL, Abraham PA. Systemic absorption of oral vancomycin in patients with renal insufficiency and antibiotic-associated colitis. Am J Kidney Dis. 1987;9:422–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Shibata N, Ishida M, Prasad YV, Gao W, Yoshikawa Y, Takada K. Highly sensitive quantification of vancomycin in plasma samples using liquid chromatography-tandem mass spectrometry and oral bioavailability in rats. J Chromatogr B Anal Technol Biomed Life Sci. 2003;789:211–8.CrossRefGoogle Scholar
  35. 35.
    Sauter M, Uhl P, Foerster KI, et al. An ultra-sensitive UHPLC-MS/MS assay for the quantification of orally administered vancomycin in plasma. J Pharm Biomed Anal. 2019;174:633–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Tsoi V, Bhayana V, Bombassaro AM, Tirona RG, Kittanakom S. Falsely elevated vancomycin concentrations in a patient not receiving vancomycin. Pharmacotherapy. 2019;39:778–82.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Baird DR. Comparison of two oral formulations of vancomycin for treatment of diarrhea associated with Clostridium difficile. J Antimicrob Chemother. 1989;23:167–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Gonzales M, Pepin J, Frost EH, et al. Faecal pharmacokinetics of orally administered vancomycin in patients with suspected Clostridium difficile infection. BMC Infect Dis. 2010;10:363.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Konishi T, Idezuki Y, Kobayashi H, et al. Oral vancomycin hydrochloride therapy for postoperative methicillin-cephem-resistant Staphylococcus aureus enteritis. Surg Today Jpn J Surg. 1997;27:826–32.CrossRefGoogle Scholar
  40. 40.
    Gelfand MS, Cleveland KO, Memon KA. Detection of vancomycin levels in patients receiving telavancin but not vancomycin. J Antimicrob Chemother. 2012;67:508–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Tobin CM, Darville JM, Thomson AH, et al. Vancomycin therapeutic drug monitoring: is there a consensus view ? The results of a UK National External Quality Assessment Scheme UK NEQAS) for Antibiotic Assays Questionnaire. J Antimicrob Chemother. 2002;50:713–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Prasad YV, Puthli SP, Eaimtrakam S, et al. Enhanced intestinal absorption of vancomycin with Labrasol and d-alpha-tocopheryl PEG 1000 succinate in rats. Int J Pharm. 2003;250:181–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Uhl P, Pantze S, Storck P, et al. Oral delivery of vancomycin by tetraether lipid liposomes. Eur J Pharm Sci. 2017;108:111–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Pettit NN, DePestel DD, Fohl AL, Eyler R, Carver PL. Risk factors for systemic vancomycin exposure following administration of oral vancomycin for the treatment of Clostridium difficile infection. Pharmacotherapy. 2015;352:119–26.CrossRefGoogle Scholar
  45. 45.
    Malamood M, Nellis E, Ehrlich AC, Friedenberg FK. Vancomycin enemas as adjunctive therapy for Clostridium difficile infection. J Clin Med Res. 2015;7:422–7.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Akamine CM, Ing MB, Jackson CS, Loo LK. The efficacy of intracolonic vancomycin for severe Clostridium difficile colitis: a case series. BMC Infect Dis. 2016;7:316.CrossRefGoogle Scholar
  47. 47.
    Wilke K, Helbig S, de With K. Serum vancomycin concentrations after oral and intracolonic vancomycin administration in a patient with colonic discontinuity and severe Clostridium difficile infection. Am J Health Syst Pharm. 2018;75:e189–93.PubMedCrossRefGoogle Scholar
  48. 48.
    McCullough JM, Dielman DG, Peery D. Oral vancomycin-induced rash: case report and review of the literature. DICP. 1991;25:1326–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Osawa R, Kaka AS. Maculopapular rash induced by oral vancomycin. Clin Infect Dis. 2008;47:860–1.PubMedCrossRefGoogle Scholar
  50. 50.
    Barron J, Lattes A, Marcus EL. Rash induced by enteral vancomycin therapy in an older patient in a long-term care ventilator unit: case report and review of the literature. Allergy Asthma Clin Immunol. 2018;6:73.CrossRefGoogle Scholar
  51. 51.
    Bossé D, Lemire C, Ruel J, Cantin AM, Ménard F, Valiquette L. Severe anaphylaxis caused by orally administered vancomycin to a patient with Clostridium difficile infection. Infection. 2013;41:579–82.PubMedCrossRefGoogle Scholar
  52. 52.
    Killian AD, Sahai JV, Memish ZA. Red man syndrome after oral vancomycin. Ann Intern Med. 1991;115:410–1.PubMedCrossRefGoogle Scholar
  53. 53.
    Bergeron L, Boucher FD. Possible red-man syndrome associated with systemic absorption of oral vancomycin in a child with normal renal function. Ann Pharmacother. 1994;28:581–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Bailey P, Gray H. An elderly woman with ‘Red Man Syndrome’ in association with oral vancomycin therapy: a case report. Cases J. 2008;1:111.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Nallasivan M, Maher F, Murthy K. Rare case of “red man” syndrome in a female patient treated with oral vancomycin for Clostridium difficile diarrhoea. BMJ Case Rep. 2009.  https://doi.org/10.1136/bcr.03.2009.1705.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Arroyo-Mercado F, Khudyakov A, Chawla GS, Cantres-Fonseca O, McFarlane IM. Red Man Syndrome with oral vancomycin: a case report. Am J Med Case Rep. 2019;7:16–7.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gomceli U, Vangala S, Zeana C, Kelly PJ, Singh M. An unusual case of ototoxicity with use of oral vancomycin. Case Rep Infect Dis. 2018;3:2980913.Google Scholar
  58. 58.
    Sawada A, Kawanishi K, Morikawa S, et al. Biopsy-proven vancomycin-induced acute kidney injury: a case report and literature review. BMC Nephrol. 2018;19:72.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Tang RK, Tse RK. Acute renal failure after topical fortified gentamicin and vancomycin eyedrops. J Ocul Pharmacol Ther. 2011;27:411–3.PubMedCrossRefGoogle Scholar
  60. 60.
    Thompson CM Jr, Long SS, Gilligan PH, Prebis JW. Absorption of oral vancomycin—possible associated toxicity. Int J Pediatr Nephrol. 1983;4:1–4.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Cadle RM, Mansouri MD, Darouiche RO. Vancomycin-induced elevation of liver enzyme levels. Ann Pharmacol. 2006;40:1186–9.CrossRefGoogle Scholar
  62. 62.
    Pryka RD. Vancomycin serum concentration monitoring: a continued debate. Ann Pharmacother. 1994;2812:1397–9.CrossRefGoogle Scholar
  63. 63.
    Moellering RD. Monitoring serum vancomycin levels: climbing the mountain because it is “there”? Clin Infect Dis. 1994;18:544–6.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Freeman CD, Quintilliani R, Nightingale CH. Vancomycin therapeutic drug monitoring: is it necessary? Ann Pharmacother. 1993;27:594–8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections. Arch Intern Med. 2006;166:2138–44.PubMedCrossRefGoogle Scholar
  66. 66.
    Lodise TP, Patel N, Lomaestro BM, Rodvold KA, Drusano GL. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis. 2009;49:507–14.PubMedCrossRefGoogle Scholar
  67. 67.
    Bosso JA, Nappi J, Rudisill C, et al. Relationship between vancomycin trough concentration and nephrotoxicity: a prospective multicenter trial. Antimicrob Agents Chemother. 2011;55:5475–9.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wong-Beringer A, Joo J, Tse E, Beringer P. Vancomycin-associated nephrotoxicity: a critical appraisal of risk with high-dose therapy. Int J Antimicrob Agents. 2011;37:95–101.PubMedCrossRefGoogle Scholar
  69. 69.
    Cano EL, Haque NZ, Welch VL, et al. Incidence of nephrotoxicity and association with vancomycin use in intensive care unit patients with pneumonia: retrospective analysis of the IMPACT-HAP database. Clin Ther. 2012;34:149–57.PubMedCrossRefGoogle Scholar
  70. 70.
    Contreiras C, Legal M, Lau TT, Thalakada R, Shalansky S, Ensom MH. Identification of risk factors for nephrotoxicity in patients receiving extended-duration, high-trough vancomycin therapy. Can J Hosp Pharm. 2014;67:126–32.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Barceló-Vidal J, Rodriguez-Garcia E, Grau S. Extremely high levels of vancomycin can cause severe renal toxicity. Infect Drug Resist. 2018;30:1027–30.CrossRefGoogle Scholar
  72. 72.
    Liang X, Fan Y, Yang M, et al. A prospective multicenter clinical observational study on vancomycin efficiency and safety with therapeutic drug monitoring. Clin Infect Dis. 2018;67:S249–55.PubMedCrossRefGoogle Scholar
  73. 73.
    Imai S, Yamada T, Kasashi K, Niinuma Y, Kobayashi M, Iseki K. Construction of a risk prediction model of vancomycin-associated nephrotoxicity to be used at the time of initial therapeutic drug monitoring: a data mining analysis using a decision tree model. J Eval Clin Pract. 2019;25:163–70.PubMedCrossRefGoogle Scholar
  74. 74.
    Hirai T, Hanada K, Kanno A, Akashi M, Itoh T. Risk factors for vancomycin nephrotoxicity and time course of renal function during vancomycin treatment. Eur J Clin Pharmacol. 2019;75:859–66.PubMedCrossRefGoogle Scholar
  75. 75.
    Damjanovic V, van Saene HK, Cooke RW, Pierro A. Oral vancomycin in staphylococcal septicaemia of bowel origin in neonates. J Hosp Infect. 1993;25:215–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Wood A, Wassil K, Edwards E. Oral absorption of enteral vancomycin in a child with Clostridium difficile colitis and renal impairment. J Pediatr Pharmacol Ther. 2013;18:315–7.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Antoon JW, Hall M, Metropulos D, Steiner MJ, Jhaveri R, Lohr JA. A prospective pilot study on the systemic absorption of oral vancomycin in children with colitis. J Pediatr Pharmacol Ther. 2016;21:426–31.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Spitzer PG, Eliopoulos GM. Systemic absorption of enteral vancomycin in a patient with pseudomembranous colitis. Ann Intern Med. 1984;100:533–4.PubMedCrossRefGoogle Scholar
  79. 79.
    Dudley MN, Quintiliani R, Nightingale CH, Gontarz N. Absorption of vancomycin. Ann Intern Med. 1984;101:144.PubMedCrossRefGoogle Scholar
  80. 80.
    Bricaire F, Pawin H, Frottier J, Bauchet J, Adams C. Absorption de le vancomycine per os au cours d’une colite inflammatoire. Press Med. 1985;14:429.Google Scholar
  81. 81.
    Pasic M, Carrel T, Opravil M, Mihaljevic T, von Segesser L, Turina M. Systemic absorption after local intracolonic vancomycin in pseudomembranous colitis. Lancet. 1993;342:443.PubMedCrossRefGoogle Scholar
  82. 82.
    Barclay P, O’Connell P. Therapeutic serum levels achieved with oral vancomycin. Aust J Hosp Pharm. 1994;2:125.Google Scholar
  83. 83.
    Armstrong CJ, Wilson TS. Systemic absorption of vancomycin. J Clin Pathol. 1995;48:689.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Brouwer DM, Corallo CE, Coutsouvelis J. Systemic absorption of low-dose oral vancomycin. J Pharm Pract Res. 2005;35:222–3.CrossRefGoogle Scholar
  85. 85.
    Aradhyula S, Manian FA, Hafidh SA, Bhutto SS, Alpert MA. Significant absorption of oral vancomycin in a patient with Clostridium difficile colitis and normal renal function. South Med J. 2006;99:518–20.PubMedCrossRefGoogle Scholar
  86. 86.
    Oami T, Hattori N, Matsumura Y, et al. The effects of fasting and massive diarrhea on absorption of enteral vancomycin in critically ill patients: a retrospective observational study. Front Med (Lausanne). 2017;8:70.CrossRefGoogle Scholar
  87. 87.
    Pogue JM, De Pestel DD, Kaul DR, Khaled Y, Frame DG. Systemic absorption of oral vancomycin in a peripheral blood stem cell transplant patient with severe graft-versus-host disease of the gastrointestinal tract. Transpl Infect Dis. 2009;11:467–70.PubMedCrossRefGoogle Scholar
  88. 88.
    Yamazaki S, Nakamura H, Yamagata S, et al. Unexpected serum level of vancomycin after oral administration in a patient with severe colitis and renal insufficiency. Int J Clin Pharmacol Ther. 2009;47:701–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Chihara S, Shimuzu R, Furukata S, Hoshino K. Oral vancomycin may have significant absorption in patients with Clostridium difficile colitis. Scand J Infect Dis. 2011;43:149–50.PubMedCrossRefGoogle Scholar
  90. 90.
    Rao S, Kupfer Y, Pagala M, Chapnick E, Tessler S. Systemic absorption of oral vancomycin in patients with Clostridium difficile infection. Scand J Infect Dis. 2011;43:386–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Yamazaki S, Suzuki T, Suzuki T, et al. An extremely high bioavailability of orally administered vancomycin in a patient with severe colitis and renal insufficiency. J Infect Chemother. 2017;23:848–51.PubMedCrossRefGoogle Scholar
  92. 92.
    Hirata S, Matoba M, Izumi S, et al. Elevated serum vancomycin concentrations after oral administration in a hemodialysis patient with pseudomembranous colitis. Rinsho Yakuri. 2003;34:87–90.CrossRefGoogle Scholar
  93. 93.
    Fukushima K, Okada A, Hayashi Y, et al. Enhanced oral bioavailability of vancomycin in rats treated with long-term parenteral nutrition. Springerplus. 2015;22:442.CrossRefGoogle Scholar
  94. 94.
    Donskey C, Miller M, Crook D, Sears P, Gorbach S. Plasma vancomycin concentrations in patients with Clostridium difficile infection taking oral vancomycin. Clin Microbiol Infect. 2012;18:444–5.Google Scholar
  95. 95.
    Kim HN, Kim H, Moon HW, Hur M, Yun YM. Toxin positivity and tcdB gene load in broad-spectrum Clostridium difficile infection. Infection. 2018;46:113–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Kimura T, Uda A, Sakaue T, et al. Long-term efficacy of comprehensive multidisciplinary antibiotic stewardship programs centered on weekly prospective audit and feedback. Infection. 2018;46:215–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineThe University of British ColumbiaVancouverCanada
  2. 2.Department of Pathology and Laboratory MedicineChildren’s and Women’s Health Centre of British ColumbiaVancouverCanada

Personalised recommendations