Advertisement

Infection

, Volume 46, Issue 1, pp 69–76 | Cite as

Whole genome sequencing identifies influenza A H3N2 transmission and offers superior resolution to classical typing methods

  • Dominik M. Meinel
  • Susanne Heinzinger
  • Ute Eberle
  • Nikolaus Ackermann
  • Katharina Schönberger
  • Andreas Sing
Original Paper

Abstract

Objectives

Influenza with its annual epidemic waves is a major cause of morbidity and mortality worldwide. However, only little whole genome data are available regarding the molecular epidemiology promoting our understanding of viral spread in human populations.

Methods

We implemented a RT-PCR strategy starting from patient material to generate influenza A whole genome sequences for molecular epidemiological surveillance. Samples were obtained within the Bavarian Influenza Sentinel. The complete influenza virus genome was amplified by a one-tube multiplex RT-PCR and sequenced on an Illumina MiSeq.

Results

We report whole genomic sequences for 50 influenza A H3N2 viruses, which was the predominating virus in the season 2014/15, directly from patient specimens. The dataset included random samples from Bavaria (Germany) throughout the influenza season and samples from three suspected transmission clusters. We identified the outbreak samples based on sequence identity. Whole genome sequencing (WGS) was superior in resolution compared to analysis of single segments or partial segment analysis. Additionally, we detected manifestation of substantial amounts of viral quasispecies in several patients, carrying mutations varying from the dominant virus in each patient.

Conclusion

Our rapid whole genome sequencing approach for influenza A virus shows that WGS can effectively be used to detect and understand outbreaks in large communities. Additionally, the genomic data provide in-depth details about the circulating virus within one season.

Keywords

Influenza A Outbreak analysis NGS Next-generation sequencing WGS Whole genome sequencing Epidemiology Surveillance Quasispecies 

Notes

Acknowledgements

We would like to thank Christine Hartberger and Marina Fischer for excellent technical assistance as well as Sabine Meinel for support and critical discussion of the manuscript.

Funding

The work was supported by the Bavarian State Ministry of Health and Care (Project 13-30). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions

DMM designed and carried out experiments, performed data analysis and wrote manuscript. SH, UE, KS, NA carried out sample collection and selection. AS performed data analysis and wrote manuscript.

Compliance with ethical standards

Conflict of interests

The authors declare no conflict of interests.

Ethical approval

No ethical approval was required for this study, as samples were collected as part of public health outbreak investigations based on the German Infection Protection Act.

References

  1. 1.
    RKI. Influenzameldung gemäß IfSG in der Saison 2014/2015 unter besonderer Berücksichtigung von Ausbruchsgeschehen in Altenheimen/Pflegeeinrichtungen. Epidemiologisches Bulletin. 2015;2015.Google Scholar
  2. 2.
    Kash JC, Taubenberger JK. The role of viral, host, and secondary bacterial factors in influenza pathogenesis. Am J Pathol. 2015;185:1528–36.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Perez-Losada M, Arenas M, Galan JC, Palero F, Gonzalez-Candelas F. Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. Infect Genet Evol. 2015;30:296–307.CrossRefPubMedGoogle Scholar
  4. 4.
    Xie H, Wan XF, Ye Z, Plant EP, Zhao Y, Xu Y, et al. H3N2 mismatch of 2014-15 northern hemisphere influenza vaccines and head-to-head comparison between human and ferret antisera derived antigenic maps. Sci Rep. 2015;5:15279.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pebody RG, Warburton F, Ellis J, Andrews N, Thompson C, von Wissmann B, et al. Low effectiveness of seasonal influenza vaccine in preventing laboratory-confirmed influenza in primary care in the United Kingdom: 2014/15 mid-season results. Euro Surveill. 2015;20:21025.PubMedGoogle Scholar
  6. 6.
    Skowronski DM, Chambers C, Sabaiduc S, De Serres G, Dickinson JA, Winter AL, et al. Euro Surveill. Euro Surveill. 2015;20:21022.PubMedGoogle Scholar
  7. 7.
    Broberg E, Snacken R, Adlhoch C, Beaute J, Galinska M, Pereyaslov D, et al. Start of the 2014/15 influenza season in Europe: drifted influenza A(H3N2) viruses circulate as dominant subtype. Euro Surveill. 2015;20.Google Scholar
  8. 8.
    Campe H, Heinzinger S, Hartberger C, Sing A. Clinical symptoms cannot predict influenza infection during the 2013 influenza season in Bavaria, Germany. Epidemiol Infect. 2015;21:1–7.Google Scholar
  9. 9.
    Schulze M, Nitsche A, Schweiger B, Biere B. Diagnostic approach for the differentiation of the pandemic influenza A(H1N1)v virus from recent human influenza viruses by real-time PCR. PLoS ONE. 2010;5:e9966.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schweiger B, Timm H. TaqMan-PCR: Schnelle Typisierung und Subtypisierung von Influenzaviren direkt aus Patientenmaterial. Bundesgesundheitsbl. 2000;43:788–95.CrossRefGoogle Scholar
  11. 11.
    Zhou B, Donnelly ME, Scholes DT, St. George K, Hatta M, Kawaoka Y, et al. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and swine origin human influenza A viruses. J Virol. 2009;83:10309–13.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Meinel DM, Margos G, Konrad R, Krebs S, Blum H, Sing A. Next generation sequencing analysis of nine Corynebacterium ulcerans isolates reveals zoonotic transmission and a novel putative diphtheria toxin-encoding pathogenicity island. Genome Med. 2014;6:113.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 2005;15:1451–5.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, et al. Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol. 2010;Chapter 19:Unit 19.0.1-21.Google Scholar
  15. 15.
    Goecks J, Nekrutenko A, Taylor J, Team TG. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11:R86.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics. 2009;25:2283–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, et al. Artemis: sequence visualization and annotation. Bioinformatics. 2000;16:944–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nobusawa E, Sato K. Comparison of the mutation rates of human influenza A and B viruses. J Virol. 2006;80:3675–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kawaoka Y, Gorman OT, Ito T, Wells K, Donis RO, Castrucci MR, et al. Influence of host species on the evolution of the nonstructural (NS) gene of influenza A viruses. Virus Res. 1998;55:143–56.CrossRefPubMedGoogle Scholar
  23. 23.
    Lindstrom SE, Hiromoto Y, Nishimura H, Saito T, Nerome R, Nerome K. Comparative analysis of evolutionary mechanisms of the hemagglutinin and three internal protein genes of influenza B virus: multiple cocirculating lineages and frequent reassortment of the NP, M, and NS genes. J Virol. 1999;73:4413–26.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Ludwig S, Schultz U, Mandler J, Fitch WM, Scholtissek C. Phylogenetic relationship of the nonstructural (NS) genes of influenza A viruses. Virology. 1991;183:566–77.CrossRefPubMedGoogle Scholar
  25. 25.
    Rejmanek D, Hosseini PR, Mazet JAK, Daszak P, Goldstein T. Evolutionary dynamics and global diversity of influenza A virus. J Virol. 2015;89:10993–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Leekha S, Zitterkopf NL, Espy MJ, Smith TF, Thompson RL, Sampathkumar P. Duration of influenza A virus shedding in hospitalized patients and implications for infection control. Infect Control Hosp Epidemiol. 2007;28:1071–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Leland DS, Ginocchio CC. Role of cell culture for virus detection in the age of technology. Clin Microbiol Rev. 2007;20:49–78.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lackenby A, Hungnes O, Dudman SG, Meijer A, Paget WJ, Hay AJ, et al. Emergence of resistance to oseltamivir among influenza A(H1N1) viruses in Europe. Euro Surveill. 2008;13:3–4.CrossRefGoogle Scholar
  29. 29.
    Spanakis N, Pitiriga V, Gennimata V, Tsakris A. A review of neuraminidase inhibitor susceptibility in influenza strains. Expert Rev Anti Infect Ther. 2014;12:1325–36.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Dominik M. Meinel
    • 1
  • Susanne Heinzinger
    • 1
  • Ute Eberle
    • 1
  • Nikolaus Ackermann
    • 1
  • Katharina Schönberger
    • 1
  • Andreas Sing
    • 1
  1. 1.Bavarian Health and Food Safety AuthorityOberschleißheimGermany

Personalised recommendations