, Volume 46, Issue 1, pp 1–13 | Cite as

Were all carbapenemases created equal? Treatment of NDM-producing extensively drug-resistant Enterobacteriaceae: a case report and literature review

  • Vindana ChibabhaiEmail author
  • Trusha Nana
  • Norma Bosman
  • Teena Thomas
  • Warren Lowman



There is currently a paucity of published literature focused on the treatment of infections caused by NDM-producing organisms.


We describe a case of a bacteraemia caused by an extensively drug-resistant (XDR) New Delhi metallo-β-lactamase (NDM)-producing Serratia marcescens and review the treatment options for XDR NDM-producing Enterobacteriaceae.


Infections caused by New Delhi beta-lactamase (NDM)-producing Enterobacteriaceae are becoming increasingly prevalent worldwide. The presence of the enzyme results in multidrug-resistant and extensively drug-resistant phenotypes which often pose a treatment challenge. Despite this challenge, case reports and series have demonstrated good clinical outcomes with numerous treatment options in comparison to infections due to KPC-producing Enterobacteriaceae.


Further good-quality research focused on the treatment of NDM-producing Enterobacteriaceae is warranted.


New Delhi beta-lactamase (NDM) Carbapenemase Extensively drug resistant Treatment Enterobacteriaceae 


Compliance with ethical standards


No funding was sought for this paper.

Conflict of interest

All authors declare no conflicts of interest.

Informed consent

Informed consent has been obtained from the concerned case.


  1. 1.
    Nordmann P, Poirel L, Walsh TR, Livermore DM. The emerging NDM carbapenemases. Trends Microbiol. 2011;19:588–95. doi: 10.1016/j.tim.2011.09.005.CrossRefPubMedGoogle Scholar
  2. 2.
    Arana DM, Saez D, García-Hierro P, Bautista V, Fernández-Romero S, Ángel de la Cal M, Alós JI, Oteo J. Concurrent interspecies and clonal dissemination of OXA-48 carbapenemase. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2015;21:148.e1–4. doi: 10.1016/j.cmi.2014.07.008.Google Scholar
  3. 3.
    Lin X, Hu Q, Zhang R, Hu Y, Xu X, Lv H. Emergence of Serratia marcescens isolates possessing carbapenem-hydrolysing β-lactamase KPC-2 from China. J Hosp Infect. 2016;94:65–7. doi: 10.1016/j.jhin.2016.04.006.CrossRefPubMedGoogle Scholar
  4. 4.
    Mataseje LF, Boyd DA, Delport J, Hoang L, Imperial M, Lefebvre B, Kuhn M, Van Caeseele P, Willey BM, Mulvey MR. Serratia marcescens harbouring SME-type class A carbapenemases in Canada and the presence of blaSME on a novel genomic island, SmarGI1-1. J Antimicrob Chemother. 2014;69:1825–9. doi: 10.1093/jac/dku040.CrossRefPubMedGoogle Scholar
  5. 5.
    Rubin JE, Peirano G, Peer AK, Govind CN, Pitout JDD. NDM-1-producing Enterobacteriaceae from South Africa: moving towards endemicity? Diagn Microbiol Infect Dis. 2014;79:378–80. doi: 10.1016/j.diagmicrobio.2014.04.003.CrossRefPubMedGoogle Scholar
  6. 6.
    Castanheira M, Deshpande LM, Mathai D, Bell JM, Jones RN, Mendes RE. Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006–2007. Antimicrob Agents Chemother. 2011;55:1274–8. doi: 10.1128/AAC.01497-10.CrossRefPubMedGoogle Scholar
  7. 7.
    Olaitan AO, Morand S, Rolain J-M. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5:643. doi: 10.3389/fmicb.2014.00643.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2012;18:268–81. doi: 10.1111/j.1469-0691.2011.03570.x.Google Scholar
  9. 9.
    Clinical and Laboratory Standards Institute (2016) M100S, performance standards for antimicrobial susceptibility testing, 26th Edition.Google Scholar
  10. 10.
    Franklin C, Liolios L, Peleg AY. Phenotypic detection of carbapenem-susceptible metallo-beta-lactamase-producing gram-negative bacilli in the clinical laboratory. J Clin Microbiol. 2006;44:3139–44. doi: 10.1128/JCM.00879-06.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53:5046–54. doi: 10.1128/AAC.00774-09.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Poirel L, Dortet L, Bernabeu S, Nordmann P. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob Agents Chemother. 2011;55:5403–7. doi: 10.1128/AAC.00585-11.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Falagas ME, Lourida P, Poulikakos P, Rafailidis PI, Tansarli GS. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother. 2014;58:654–63. doi: 10.1128/AAC.01222-13.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Datta S, Roy S, Chatterjee S, Saha A, Sen B, Pal T, Som T, Basu S. A five-year experience of carbapenem resistance in Enterobacteriaceae causing neonatal septicaemia: predominance of NDM-1. PLoS One. 2014;9:e112101. doi: 10.1371/journal.pone.0112101.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    de Jager P, Chirwa T, Naidoo S, Perovic O, Thomas J. Nosocomial outbreak of New Delhi metallo-β-lactamase-1-producing Gram-negative bacteria in South Africa: a case-control study. PLoS One. 2015;10:e0123337. doi: 10.1371/journal.pone.0123337.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Freire MP, Abdala E, Moura ML, de Paula FJ, Spadão F, Caiaffa-Filho HH, David-Neto E, Nahas WC, Pierrotti LC. Risk factors and outcome of infections with Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in kidney transplant recipients. Infection. 2015;43:315–23. doi: 10.1007/s15010-015-0743-4.CrossRefPubMedGoogle Scholar
  17. 17.
    Fraenkel-Wandel Y, Raveh-Brawer D, Wiener-Well Y, Yinnon AM, Assous MV. Mortality due to blaKPC Klebsiella pneumoniae bacteraemia. J Antimicrob Chemother. 2016;71:1083–7. doi: 10.1093/jac/dkv414.CrossRefPubMedGoogle Scholar
  18. 18.
    Zmarlicka MT, Nailor MD, Nicolau DP. Impact of the New Delhi metallo-beta-lactamase on beta-lactam antibiotics. Infect Drug Resist. 2015;8:297–309. doi: 10.2147/IDR.S39186.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Tamma PD, Goodman KE, Harris AD, Tekle T, Roberts A, Taiwo A, Simner PJ. Comparing the outcomes of patients with carbapenemase-producing and non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae bacteremia. Clin Infect Dis Off Publ Infect Dis Soc Am. 2017;64:257–64. doi: 10.1093/cid/ciw741.CrossRefGoogle Scholar
  20. 20.
    Oteo J, Domingo-García D, Fernández-Romero S, Saez D, Guiu A, Cuevas O, Lopez-Brea M, Campos J. Abdominal abscess due to NDM-1-producing Klebsiella pneumoniae in Spain. J Med Microbiol. 2012;61:864–7. doi: 10.1099/jmm.0.043190-0.CrossRefPubMedGoogle Scholar
  21. 21.
    Peirano G, Ahmed-Bentley J, Woodford N, Pitout JD. New Delhi metallo-beta-lactamase from traveler returning to Canada. Emerg Infect Dis. 2011;17:242–4. doi: 10.3201/eid1702.101313.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang X, Li X, Wang M, Yue H, Li P, Liu Y, Cao W, Yao D, Liu L, Zhou X, Zheng R, Bo T. Outbreak of NDM-1-producing Klebsiella pneumoniae causing neonatal infection in a teaching hospital in mainland China. Antimicrob Agents Chemother. 2015;59:4349–51. doi: 10.1128/AAC.03868-14.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wiskirchen DE, Nordmann P, Crandon JL, Nicolau DP. Efficacy of humanized carbapenem exposures against New Delhi metallo-β-lactamase (NDM-1)-producing Enterobacteriaceae in a murine infection model. Antimicrob Agents Chemother. 2013;57:3936–40. doi: 10.1128/AAC.00708-13.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wiskirchen DE, Nordmann P, Crandon JL, Nicolau DP. In vivo efficacy of human simulated regimens of carbapenems and comparator agents against NDM-1-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2014;58:1671–7. doi: 10.1128/AAC.01946-13.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gutiérrez-Gutiérrez B, Salamanca E, de Cueto M, Hsueh P-R, Viale P, Paño-Pardo JR, Venditti M, Tumbarello M, Daikos G, Cantón R, Doi Y, Tuon FF, Karaiskos I, Pérez-Nadales E, Schwaber MJ, Azap ÖK, Souli M, Roilides E, Pournaras S, Akova M, Pérez F, Bermejo J, Oliver A, Almela M, Lowman W, Almirante B, Bonomo RA, Carmeli Y, Paterson DL, Pascual A, Rodríguez-Baño J, REIPI, ESGBIS, INCREMENT Investigators. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect Dis. 2017;17:726–34. doi: 10.1016/S1473-3099(17)30228-1.CrossRefPubMedGoogle Scholar
  26. 26.
    Giamarellou H, Galani L, Baziaka F, Karaiskos I. Effectiveness of a double-carbapenem regimen for infections in humans due to carbapenemase-producing pandrug-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother. 2013;57:2388–90. doi: 10.1128/AAC.02399-12.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Oliva A, D’Abramo A, D’Agostino C, Iannetta M, Mascellino MT, Gallinelli C, Mastroianni CM, Vullo V. Synergistic activity and effectiveness of a double-carbapenem regimen in pandrug-resistant Klebsiella pneumoniae bloodstream infections. J Antimicrob Chemother. 2014;69:1718–20. doi: 10.1093/jac/dku027.CrossRefPubMedGoogle Scholar
  28. 28.
    Poirel L, Kieffer N, Nordmann P. In vitro evaluation of dual carbapenem combinations against carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2016;71:156–61. doi: 10.1093/jac/dkv294.CrossRefPubMedGoogle Scholar
  29. 29.
    Tängdén T, Hickman RA, Forsberg P, Lagerbäck P, Giske CG, Cars O. Evaluation of double- and triple-antibiotic combinations for VIM- and NDM-producing Klebsiella pneumoniae by in vitro time-kill experiments. Antimicrob Agents Chemother. 2014;58:1757–62. doi: 10.1128/AAC.00741-13.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int. 2014;2014:e249856. doi: 10.1155/2014/249856.CrossRefGoogle Scholar
  31. 31.
    Biedenbach D, Bouchillon S, Hackel M, Hoban D, Kazmierczak K, Hawser S, Badal R. Dissemination of NDM Metallo-β-lactamase genes among clinical isolates of Enterobacteriaceae collected during the SMART global surveillance study from 2008 to 2012. Antimicrob Agents Chemother. 2015;59:826–30. doi: 10.1128/AAC.03938-14.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Berçot B, Poirel L, Nordmann P. Updated multiplex polymerase chain reaction for detection of 16S rRNA methylases: high prevalence among NDM-1 producers. Diagn Microbiol Infect Dis. 2011;71:442–5. doi: 10.1016/j.diagmicrobio.2011.08.016.CrossRefPubMedGoogle Scholar
  33. 33.
    Berçot B, Poirel L, Dortet L, Nordmann P. In vitro evaluation of antibiotic synergy for NDM-1-producing Enterobacteriaceae. J Antimicrob Chemother. 2011;66:2295–7. doi: 10.1093/jac/dkr296.CrossRefPubMedGoogle Scholar
  34. 34.
    Albur M, Noel A, Bowker K, MacGowan A. Bactericidal activity of multiple combinations of tigecycline and colistin against NDM-1-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2012;56:3441–3. doi: 10.1128/AAC.05682-11.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Albur MS, Noel A, Bowker K, MacGowan A. The combination of colistin and fosfomycin is synergistic against NDM-1-producing Enterobacteriaceae in in vitro pharmacokinetic/pharmacodynamic model experiments. Int J Antimicrob Agents. 2015;46:560–7. doi: 10.1016/j.ijantimicag.2015.07.019.CrossRefPubMedGoogle Scholar
  36. 36.
    Neuner EA, Sekeres J, Hall GS, van Duin D. Experience with fosfomycin for treatment of urinary tract infections due to multidrug-resistant organisms. Antimicrob Agents Chemother. 2012;56:5744–8. doi: 10.1128/AAC.00402-12.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lavigne J-P, Cuzon G, Combescure C, Bourg G, Sotto A, Nordmann P. Virulence of Klebsiella pneumoniae Isolates Harboring blaKPC-2 Carbapenemase Gene in a Caenorhabditis elegans Model. PLoS One. 2013;8:e67847. doi: 10.1371/journal.pone.0067847.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    McLaughlin MM, Advincula MR, Malczynski M, Barajas G, Qi C, Scheetz MH. Quantifying the clinical virulence of Klebsiella pneumoniae producing carbapenemase Klebsiella pneumoniae with a Galleria mellonellamodel and a pilot study to translate to patient outcomes. BMC Infect Dis. 2014;. doi: 10.1186/1471-2334-14-31.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Göttig S, Riedel-Christ S, Saleh A, Kempf VAJ, Hamprecht A. Impact of blaNDM-1 on fitness and pathogenicity of Escherichia coli and Klebsiella pneumoniae. Int J Antimicrob Agents. 2016;47:430–5. doi: 10.1016/j.ijantimicag.2016.02.019.CrossRefPubMedGoogle Scholar
  40. 40.
    Mouton JW, Brown DFJ, Apfalter P, Cantón R, Giske CG, Ivanova M, MacGowan AP, Rodloff A, Soussy C-J, Steinbakk M, Kahlmeter G. The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2012;18:E37–45. doi: 10.1111/j.1469-0691.2011.03752.x.Google Scholar
  41. 41.
    Sime FB, Roberts MS, Roberts JA. Optimization of dosing regimens and dosing in special populations. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2015;21:886–93. doi: 10.1016/j.cmi.2015.05.002.Google Scholar
  42. 42.
    Lowman W, Schleicher G. Antimicrobial treatment and outcomes of critically ill patients with OXA-48like carbapenemase-producing Enterobacteriaceae infections. Diagn Microbiol Infect Dis. 2015;81:138–40. doi: 10.1016/j.diagmicrobio.2014.09.023.CrossRefPubMedGoogle Scholar
  43. 43.
    Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2014;20:862–72. doi: 10.1111/1469-0691.12697.Google Scholar
  44. 44.
    Lodise TP, Lomaestro BM, Drusano GL, Society of Infectious Diseases Pharmacists. Application of antimicrobial pharmacodynamic concepts into clinical practice: focus on beta-lactam antibiotics: insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2006;26:1320–32. doi: 10.1592/phco.26.9.1320.CrossRefPubMedGoogle Scholar
  45. 45.
    Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, Hope WW, Farkas A, Neely MN, Schentag JJ, Drusano G, Frey OR, Theuretzbacher U, Kuti JL, International Society of Anti-Infective Pharmacology and the Pharmacokinetics and Pharmacodynamics Study Group of the European Society of Clinical Microbiology and Infectious Diseases. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14:498–509. doi: 10.1016/S1473-3099(14)70036-2.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Barbhaiya RH, Forgue ST, Gleason CR, Knupp CA, Pittman KA, Weidler DJ, Movahhed H, Tenney J, Martin RR. Pharmacokinetics of cefepime after single and multiple intravenous administrations in healthy subjects. Antimicrob Agents Chemother. 1992;36:552–7.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    MacGowan AP. Tigecycline pharmacokinetic/pharmacodynamic update. J Antimicrob Chemother. 2008;62(Suppl 1):i11–6. doi: 10.1093/jac/dkn242.CrossRefPubMedGoogle Scholar
  48. 48.
    Westphal JF, Brogard JM, Caro-Sampara F, Adloff M, Blicklé JF, Monteil H, Jehl F. Assessment of biliary excretion of piperacillin-tazobactam in humans. Antimicrob Agents Chemother. 1997;41:1636–40.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Bassetti M, Righi E. New antibiotics and antimicrobial combination therapy for the treatment of gram-negative bacterial infections. Curr Opin Crit Care. 2015;21:402–11. doi: 10.1097/MCC.0000000000000235.CrossRefPubMedGoogle Scholar
  50. 50.
    Thaden JT, Pogue JM, Kaye KS. Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae. Virulence. 2016;8:1–14. doi: 10.1080/21505594.2016.1207834.Google Scholar
  51. 51.
    Biedenbach DJ, Kazmierczak K, Bouchillon SK, Sahm DF, Bradford PA. In vitro activity of aztreonam-avibactam against a global collection of Gram-negative pathogens from 2012 and 2013. Antimicrob Agents Chemother. 2015;59:4239–48. doi: 10.1128/AAC.00206-15.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
  53. 53.
    Escobar Pérez JA, Olarte Escobar NM, Castro-Cardozo B, Valderrama Márquez IA, Garzón Aguilar MI, Martinez de la Barrera L, Barrero Barreto ER, Marquez-Ortiz RA, Moncada Guayazán MV, Vanegas Gómez N. Outbreak of NDM-1-producing Klebsiella pneumoniae in a neonatal unit in Colombia. Antimicrob Agents Chemother. 2013;57:1957–60. doi: 10.1128/AAC.01447-12.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Seija V, Medina Presentado JC, Bado I, Papa Ezdra R, Batista N, Gutierrez C, Guirado M, Vidal M, Nin M, Vignoli R. Sepsis caused by New Delhi metallo-β-lactamase (blaNDM-1) and qnrD-producing Morganella morganii, treated successfully with fosfomycin and meropenem: case report and literature review. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2015;30:20–6. doi: 10.1016/j.ijid.2014.09.010.Google Scholar
  55. 55.
    Torres-González P, Bobadilla-del Valle M, Tovar-Calderón E, Leal-Vega F, Hernández-Cruz A, Martínez-Gamboa A, Niembro-Ortega MD, Sifuentes-Osornio J, Ponce-de-León A. Outbreak Caused by Enterobacteriaceae harboring NDM-1 metallo-β-lactamase carried in an IncFII plasmid in a tertiary care hospital in Mexico city. Antimicrob Agents Chemother. 2015;59:7080–3. doi: 10.1128/AAC.00055-15.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Chien JMF, Koh TH, Chan KS, Chuah THC, Tan TT. Successful treatment of NDM-1 Klebsiella pneumoniae bacteraemia in a neutropenic patient. Scand J Infect Dis. 2012;44:312–4. doi: 10.3109/00365548.2011.633549.CrossRefPubMedGoogle Scholar
  57. 57.
    Pannaraj PS, Bard JD, Cerini C, Weissman SJ. Pediatric Carbapenem-resistant Enterobacteriaceae in Los Angeles, California, a high-prevalence region in the United States. Pediatr Infect Dis J. 2015;34:11–6. doi: 10.1097/INF.0000000000000471.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wilkowski P, Ciszek M, Dobrzaniecka K, Sańko-Resmer J, Łabuś A, Grygiel K, Grochowiecki T, Młynarczyk G, Pączek L. Successful treatment of urinary tract infection in kidney transplant recipients caused by multiresistant Klebsiella pneumoniae producing New Delhi Metallo-beta-lactamase (NDM-1) with strains genotyping. Transplant Proc. 2016;48:1576–9. doi: 10.1016/j.transproceed.2016.01.060.CrossRefPubMedGoogle Scholar
  59. 59.
    Tran HH, Ehsani S, Shibayama K, Matsui M, Suzuki S, Nguyen MB, Tran DN, Tran VP, Tran DL, Nguyen HT, Dang DA, Trinh HS, Nguyen TH, Wertheim HFL. Common isolation of New Delhi metallo-beta-lactamase 1-producing Enterobacteriaceae in a large surgical hospital in Vietnam. Eur J Clin Microbiol Infect Dis. 2015;34:1247–54. doi: 10.1007/s10096-015-2345-6.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Barrios H, Silva-Sanchez J, Reyna-Flores F, Sanchez-Perez A, Sanchez-Francia D, Aguirre-Torres JA, Sánchez-Rogel J, Garza-Ramos U. Detection of a NDM-1-producing Klebsiella pneumoniae (ST22) clinical isolate at a pediatric hospital in Mexico. Pediatr Infect Dis J. 2014;33:335. doi: 10.1097/INF.0000000000000173.CrossRefPubMedGoogle Scholar
  61. 61.
    Poirel L, Ros A, Carricajo A, Berthelot P, Pozzetto B, Bernabeu S, Nordmann P. Extremely drug-resistant Citrobacter freundii isolate producing NDM-1 and other carbapenemases identified in a patient returning from India. Antimicrob Agents Chemother. 2011;55:447–8. doi: 10.1128/AAC.01305-10.CrossRefPubMedGoogle Scholar
  62. 62.
    Rogers BA, Sidjabat HE, Silvey A, Anderson TL, Perera S, Li J, Paterson DL. Treatment options for New Delhi metallo-beta-lactamase-harboring enterobacteriaceae. Microb Drug Resist Larchmt N. 2013;19:100–3. doi: 10.1089/mdr.2012.0063.CrossRefGoogle Scholar
  63. 63.
    Chan HLE, Poon LM, Chan SG, Teo JWP. The perils of medical tourism: NDM-1-positive Escherichia coli causing febrile neutropenia in a medical tourist. Singap Med J. 2011;52:299–302.Google Scholar
  64. 64.
    Stone NRH, Woodford N, Livermore DM, Howard J, Pike R, Mushtaq S, Perry C, Hopkins S (2011) Breakthrough bacteraemia due to tigecycline-resistant Escherichia coli with New Delhi metallo-β-lactamase (NDM)-1 successfully treated with colistin in a patient with calciphylaxis. J Antimicrob Chemother dkr337. doi: 10.1093/jac/dkr337.
  65. 65.
    Carvalho-Assef APD, Pereira PS, Albano RM, Berião GC, Chagas TPG, Timm LN, Da Silva RCF, Falci DR, Asensi MD. Isolation of NDM-producing Providencia rettgeri in Brazil. J Antimicrob Chemother. 2013;68:2956–7. doi: 10.1093/jac/dkt298.CrossRefPubMedGoogle Scholar
  66. 66.
    Lai C-C, Lin T-L, Tseng S-P, Huang Y-T, Wang J-T, Chang S-C, Teng L-J, Wang J-T, Hsueh P-R. Pelvic abscess caused by New Delhi metallo-β-lactamase-1-producing Klebsiella oxytoca in Taiwan in a patient who underwent renal transplantation in China. Diagn Microbiol Infect Dis. 2011;71:474–5. doi: 10.1016/j.diagmicrobio.2011.09.004.CrossRefPubMedGoogle Scholar
  67. 67.
    Hoang TH, Wertheim H, Minh NB, Duong TN, Anh DD, Phuong TTL, Son TH, Izumiya H, Ohnishi M, Shibayama K, Hien NT. Carbapenem-resistant Escherichia coli and Klebsiella pneumoniae strains containing New Delhi metallo-beta-lactamase isolated from two patients in Vietnam. J Clin Microbiol. 2013;51:373–4. doi: 10.1128/JCM.02322-12.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    De Pascale G, Martucci G, Montini L, Panarello G, Cutuli SL, Di Carlo D, Di Gravio V, Di Stefano R, Capitanio G, Vallecoccia MS, Polidori P, Spanu T, Arcadipane A, Antonelli M. Double carbapenem as a rescue strategy for the treatment of severe carbapenemase-producing Klebsiella pneumoniae infections: a two-center, matched case-control study. Crit Care. 2017;21:173. doi: 10.1186/s13054-017-1769-z.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Doi Y, Paterson DL. Carbapenemase-producing enterobacteriaceae. Semin Respir Crit Care Med. 2015;36:74–4.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10:597–02. doi: 10.1016/S1473-3099(10)70143-2.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Microbiology Laboratory, National Health Laboratory ServiceCharlotte Maxeke Johannesburg Academic HospitalJohannesburgSouth Africa
  2. 2.Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
  3. 3.Infection Control Services, National Health Laboratory ServiceCharlotte Maxeke Johannesburg Academic HospitalJohannesburgSouth Africa
  4. 4.Vermaak and Partners Pathologists, Wits Donald Gordon Medical CentreJohannesburgSouth Africa

Personalised recommendations