Advertisement

Infection

, Volume 45, Issue 5, pp 589–600 | Cite as

Human infectious diseases and risk of preeclampsia: an updated review of the literature

  • Malihe Nourollahpour Shiadeh
  • Zahra Behboodi Moghadam
  • Ishag Adam
  • Vafa Saber
  • Maryam Bagheri
  • Ali Rostami
Review

Abstract

Background

Preeclampsia (PE) is one of the major causes of maternal and perinatal morbidity and mortality, especially in low- and middle-income countries. In recent years, a growing body of literatures suggests that infections by bacteria, viruses, and parasites and their related inflammations play an important role in the pathogenesis of PE.

Methods

We searched PubMed, Google scholar, and Cochrane databases using the following search words: “infection and preeclampsia,” “bacterial infection and preeclampsia,” “viral infection and preeclampsia” and “parasitic infection and preeclampsia.”

Results

The literature review revealed that many bacteria including Helicobacter pylori, Chlamydia pneumonia, and those are involved in periodontal disease or urinary tract infections (UTIs) and some viral agents such as Cytomegalovirus, herpes simplex virus type-2, human immunodeficiency virus, and some parasites especially Plasmodium spp. and Toxoplasma gondii can be effective in development of PE. Inflammation responses against infections has major role in the inducement of PE. The shift of immunological cytokine profile of Th2 toward Th1 and high levels of pro-inflammatory cytokines (TNF-ɑ, IL-12, IFN-γ, etc.), increase of oxidative stress, increase of anti-angiogenic proteins, increase of vascular endothelial growth factor receptor 1 (sVEGFR1), and complement C5a are the main potential mechanisms related to infections and enhanced development of PE.

Conclusion

Thus, early diagnosis and treatment of bacterial, viral, and parasitic infections could be an effective strategy to reduce the incidence of PE.

Keywords

Preeclampsia Infections Inflammation Cytokine 

Notes

Acknowledgements

The authors would like to thank Dr. Hamed Behniafar, for his assistance in the preparation of this manuscript.

Funding

There are no funding sources for this paper.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Ethical approval

This study received the approval from the Shahid Beheshti University of Medical Science Ethical Committee.

References

  1. 1.
    American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ task force on hypertension in pregnancy. Obstet Gynecol. 2013;122:1122.CrossRefGoogle Scholar
  2. 2.
    Bilano VL, Ota E, Ganchimeg T, Mori R, Souza JP. Risk factors of pre-eclampsia/eclampsia and its adverse outcomes in low-and middle-income countries: a WHO secondary analysis. PLoS One. 2014;9:e91198.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Khan KS, Wojdyla D, Say L, Gülmezoglu AM, Van Look PF. WHO analysis of causes of maternal death: a systematic review. Lancet. 2006;367:1066–74.PubMedCrossRefGoogle Scholar
  4. 4.
    ACOG Committee on Obstetric Practice. Diagnosis and management of preeclampsia and eclampsia. Int J Gynecol Obstet. 2002;77:67–75.CrossRefGoogle Scholar
  5. 5.
    Lozano R, Wang H, Foreman KJ, Rajaratnam JK, Naghavi M, Marcus JR, Dwyer-Lindgren L, Lofgren KT, Phillips D, Atkinson C. Progress towards Millennium Development Goals 4 and 5 on maternal and child mortality: an updated systematic analysis. Lancet. 2011;378:1139–65.PubMedCrossRefGoogle Scholar
  6. 6.
    Ahman E, Zupan J. Neonatal and perinatal mortality: country, regional and global estimates 2004. OMS. 2007;9241596147.Google Scholar
  7. 7.
    Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, Requejo JH, Rubens C, Menon R, Van Look PF. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010;88:31–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Wardlaw TM. Low birthweight: country, regional and global estimates. Geneva: World Health Organization, UNICEF; 2004.Google Scholar
  9. 9.
    Bygbjerg I. Double burden of noncommunicable and infectious diseases in developing countries. Science. 2012;337:1499–501.PubMedCrossRefGoogle Scholar
  10. 10.
    Trogstad L, Magnus P, Stoltenberg C. Pre-eclampsia: risk factors and causal models. Best Pract Res Clin Obstet Gynaecol. 2011;25:329–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Neu N, Duchon J, Zachariah P. TORCH infections. Clin Perinatol. 2015;42:77–103.PubMedCrossRefGoogle Scholar
  12. 12.
    Yadav RK, Maity S, Saha S. A review on TORCH: groups of congenital infection during pregnancy. J Sci In Res. 2014;3(2):258–64.Google Scholar
  13. 13.
    De Francesco M, Corbellini S, Piccinelli G, Benini A, Ravizzola G, Gargiulo F, Caccuri F, Caruso A. A cluster of invasive listeriosis in Brescia, Italy. Infection. 2015;43:379.PubMedCrossRefGoogle Scholar
  14. 14.
    Sen M, Shukla B, Tuhina B. Prevalence of serum antibodies to TORCH infection in and around Varanasi, Northern India. J Clin Diagn Res. 2012;6:1483.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Waldorf KMA, McAdams RM. Influence of infection during pregnancy on fetal development. Reproduction. 2013;146:151–62.CrossRefGoogle Scholar
  16. 16.
    Duijster JW, Goorhuis A, van Genderen PJ, Visser LG, Koopmans MP, Reimerink JH, Grobusch MP, van der Eijk AA, van den Kerkhof JHCT, Reusken CB, Hahné SJM. Zika virus infection in 18 travellers returning from Surinam and the Dominican Republic, The Netherlands, November 2015–March 2016. Infection. 2016;44:797–802.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Nourollahpour Shiadeh M, Rostami A, Danesh M, Sajedi AA. Zika virus as new emerging global health threat for pregnancy and child birth. J Matern Fetal Neonatal Med. 2017;30:562.PubMedCrossRefGoogle Scholar
  18. 18.
    Coyne CB, Lazear HM. Zika virus—reigniting the TORCH. Nat Rev Microbiol. 2016;14:707–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Boos V, Feiterna-Sperling C, Sarpong A, Garten L, Cremer M, von Weizsäcker K, Bührer C, Dame C. The rationale for third trimester testing of vertical HIV transmission in neonates with CMV infection. Infection. 2016;44(4):555–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Baroncelli S, Pirillo M, Amici R, Tamburrini E, Genovese O, Ravizza M, Maccabruni A, Masuelli G, Guaraldi G, Liuzzi G, Pinnetti C, Giacomet V, Degli Antoni A, Vimercati A, Dalzero S, Sacchi V, Floridia M. HCV–HIV coinfected pregnant women: data from a multicentre study in Italy. Infection. 2016;44:235–42.PubMedCrossRefGoogle Scholar
  21. 21.
    Rustveld LO, Kelsey SF, Sharma R. Association between maternal infections and preeclampsia: a systematic review of epidemiologic studies. Matern Child Health J. 2008;12:223–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Conde-Agudelo A, Villar J, Lindheimer M. Maternal infection and risk of preeclampsia: systematic review and metaanalysis. Am J Obstet Gynecol. 2008;198:7–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Heine RP, Ness RB, Roberts JM. Seroprevalence of antibodies to Chlamydia pneumoniae in women with preeclampsia. Obstet Gynecol. 2003;101:221–6.PubMedGoogle Scholar
  24. 24.
    Dadelszen P, Magee LA, Krajden M, Alasaly K, Popovska V, Devarakonda RM, Money DM, Patrick DM, Brunham RC. Levels of antibodies against cytomegalovirus and Chlamydophila pneumoniae are increased in early onset pre-eclampsia. BJOG Int J Obstet Gynaecol. 2003;110:725–30.CrossRefGoogle Scholar
  25. 25.
    ÜstÜn Y, Engin-ÜstÜn Y, Özkaplan E, Otlu B, Sait TekerekoĞlu M. Association of Helicobacter pylori infection with systemic inflammation in preeclampsia. J Matern Fetal Neonatal Med. 2010;23:311–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Aksoy H, Ozkan A, Aktas F, Borekci B. Helicobacter pylori seropositivity and its relationship with serum malondialdehyde and lipid profile in preeclampsia. J Clin Lab Anal. 2009;23:219–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Pugliese A, Beltramo T, Todros T, Cardaropoli S, Ponzetto A. Interleukin-18 and gestosis: correlation with Helicobacter pylori seropositivity. Cell Biochem Funct. 2008;26:817–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Xie F, Hu Y, Magee LA, Money DM, Patrick DM, Krajden M, Thomas E, Von Dadelszen P, Group TS. An association between cytomegalovirus infection and pre-eclampsia: a case–control study and data synthesis. Acta Obstet Gynecol Scand. 2010;89:1162–7.PubMedCrossRefGoogle Scholar
  29. 29.
    DiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM, Gotsch F, Kim CJ, Erez O, Edwin S, Relman DA. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One. 2008;3:e3056.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Fredricks DN, Fiedler TL, Marrazzo JM. Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med. 2005;353:1899–911.PubMedCrossRefGoogle Scholar
  31. 31.
    Menard JP, Mazouni C, Salem-Cherif I, Fenollar F, Raoult D, Boubli L, Gamerre M, Bretelle F. High vaginal concentrations of Atopobium vaginae and Gardnerella vaginalis in women undergoing preterm labor. Obstet Gynecol. 2010;115:134–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Hsu C, Witter F. Urogenital infection in preeclampsia. Int J Gynecol Obstet. 1995;49:271–5.CrossRefGoogle Scholar
  33. 33.
    Gilbert GL, Garland SM, Fairley KF, Mcdowall RD. Bacteriuria due to ureaplasmas and other fastidious organisms during pregnancy: prevalence and significance. Pediatr Infect Dis J. 1986;5:239–43.CrossRefGoogle Scholar
  34. 34.
    Minassian C, Thomas SL, Williams DJ, Campbell O, Smeeth L. Acute maternal infection and risk of pre-eclampsia: a population-based case–control study. PLoS One. 2013;8:e73047.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Easter SR, Cantonwine DE, Zera CA, Lim K-H, Parry SI, McElrath TF. Urinary tract infection during pregnancy, angiogenic factor profiles, and risk of preeclampsia. Am J Obstet Gynecol. 2016;214:381–7.Google Scholar
  36. 36.
    Glaser AP, Schaeffer AJ. Urinary tract infection and bacteriuria in pregnancy. Urol Clin North Am. 2015;42:547–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Agger WA, Siddiqui D, Lovrich SD, Callister SM, Borgert AJ, Merkitch KW, Mason TC, Baumgardner DJ, Burmester JK, Shukla SK. Epidemiologic factors and urogenital infections associated with preterm birth in a midwestern US population. Obstet Gynecol. 2014;124:969–77.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cohen I, Veille J-C, Calkins BM. Improved pregnancy outcome following successful treatment of chlamydial infection. JAMA. 1990;263:3160–3.PubMedCrossRefGoogle Scholar
  39. 39.
    Haggerty CL, Klebanoff MA, Panum I, Uldum SA, Bass DC, Olsen J, Roberts JM, Ness RB. Prenatal Chlamydia trachomatis infection increases the risk of preeclampsia. Pregnancy Hypertens. 2013;3:151–4.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Herrera J, Chaudhuri G, López-Jaramillo P. Is infection a major risk factor for preeclampsia? Med Hypotheses. 2001;57:393–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Guthmiller J, Novak K. Chapter 8, Periodontal diseases. In: Brogden KA, Guthmiller JM, editors. Polymicrobial diseases. Washington (DC): ASM Press; 2002.Google Scholar
  42. 42.
    Contreras A, Herrera J, Soto J, Arce R, Jaramillo A, Botero J. Periodontitis is associated with preeclampsia in pregnant women. J Periodontol. 2006;77:182–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Wei B-J, Chen Y-J, Yu L, Wu B. Periodontal disease and risk of preeclampsia: a meta-analysis of observational studies. PLoS One. 2013;8:e70901.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Mazor-Dray E, Levy A, Schlaeffer F, Sheiner E. Maternal urinary tract infection: is it independently associated with adverse pregnancy outcome? J Matern Fetal Neonatal Med. 2009;22:124–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Shamsi U, Hatcher J, Shamsi A, Zuberi N, Qadri Z, Saleem S. A multicentre matched case control study of risk factors for preeclampsia in healthy women in Pakistan. BMC Women Health. 2010;10:14.CrossRefGoogle Scholar
  46. 46.
    Lohsoonthorn V, Kungsadalpipob K, Chanchareonsook P, Limpongsanurak S, Vanichjakvong O, Sutdhibhisal S, Sookprome C, Wongkittikraiwan N, Kamolpornwijit W, Jantarasaengaram S. Maternal periodontal disease and risk of preeclampsia: a case–control study. Am J Hypertens. 2009;22:457–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Shetty M, Shetty PK, Ramesh A, Thomas B, Prabhu S, Rao A. Periodontal disease in pregnancy is a risk factor for preeclampsia. Acta Obstet Gynecol Scand. 2010;89:718–21.PubMedCrossRefGoogle Scholar
  48. 48.
    Politano G, Passini R, Nomura M, Velloso L, Morari J, Couto E. Correlation between periodontal disease, inflammatory alterations and pre-eclampsia. J Periodontal Res. 2011;46:505–11.PubMedCrossRefGoogle Scholar
  49. 49.
    Moura da Silva G, Coutinho SB, Piscoya MDB, Ximenes RA, Jamelli SR. Periodontitis as a risk factor for preeclampsia. J Periodontol. 2012;83:1388–96.PubMedCrossRefGoogle Scholar
  50. 50.
    Taghzouti N, Xiong X, Gornitsky M, Chandad F, Voyer R, Gagnon G, Leduc L, Xu H, Tulandi T, Wei B. Periodontal disease is not associated with preeclampsia in Canadian pregnant women. J Periodontol. 2012;83:871–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Kumar A, Basra M, Begum N, Rani V, Prasad S, Lamba AK, Verma M, Agarwal S, Sharma S. Association of maternal periodontal health with adverse pregnancy outcome. J Obstet Gynaecol Res. 2013;39:40–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Xie F, Hu Y, Magee LA, Money DM, Patrick DM, Brunham RM, Thomas E, von Dadelszen P. Chlamydia pneumoniae infection in preeclampsia. Hypertens Pregnancy. 2010;29:468–77.PubMedCrossRefGoogle Scholar
  53. 53.
    Karinen L, Leinonen M, Bloigu A, Paldanius M, Koskela P, Saikku P, Hartikainen A-L, Järvelin M-R, Pouta A. Maternal serum Chlamydia pneumoniae antibodies and CRP levels in women with preeclampsia and gestational hypertension. Hypertens Pregnancy. 2008;27:143–58.PubMedCrossRefGoogle Scholar
  54. 54.
    Raynor BD, Bonney EA, Jang KT, Coto W, Garcia MS. Preeclampsia and Chlamydia pneumoniae: is there a link? Hypertens Pregnancy. 2004;23:129–34.PubMedCrossRefGoogle Scholar
  55. 55.
    Goulis DG, Chappell L, Gibbs RG, Williams D, Dave JR, Taylor P, De Swiet M, Poston L, Williamson C. Association of raised titres of antibodies to Chlamydia pneumoniae with a history of pre-eclampsia. BJOG Int J Obstet Gynaecol. 2005;112:299–305.CrossRefGoogle Scholar
  56. 56.
    Chrisoulidou A, Goulis DG, Iliadou PK, Dave JR, Bili H, Simms C, Redman CW, Williamson C. Acute and chronic Chlamydia pneumoniae infection in pregnancy complicated with preeclampsia. Hypertens Pregnancy. 2011;30:164–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Ponzetto A, Cardaropoli S, Piccoli E, Rolfo A, Gennero L, Kanduc D, Todros T. Pre-eclampsia is associated with Helicobacter pylori seropositivity in Italy. J Hypertens. 2006;24:2445–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Cardaropoli S, Rolfo A, Piazzese A, Ponzetto A, Todros T. Helicobacter pylori’s virulence and infection persistence define pre-eclampsia complicated by fetal growth retardation. World J Gastroenterol. 2011;17:5156–65.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Mosbah A, Nabiel Y. Helicobacter pylori, Chlamydiae pneumoniae and trachomatis as probable etiological agents of preeclampsia. J Matern Fetal Neonatal Med. 2016;29:1607–12.PubMedCrossRefGoogle Scholar
  60. 60.
    Rădulescu C, Bacârea A, Huţanu A, Şincu N, Băţagă S. Helicobacter pylori infection and pre-eclampsia in a Romanian study group. Int J Gynecol Obstet. 2016;135:328–9.CrossRefGoogle Scholar
  61. 61.
    Di Simone N, Tersigni C, Cardaropoli S, Franceschi F, Di Nicuolo F, Castellani R, Bugli F, Waure C, Cavaliere AF, Gasbarrini A. Helicobacter pylori infection contributes to placental impairment in preeclampsia: basic and clinical evidences. Helicobacter. 2017;22:2. doi: 10.1111/hel.12347.CrossRefGoogle Scholar
  62. 62.
    Graham DY, Yamaoka Y. Disease-specific helicobacter pylori virulence factors: the unfulfilled promise. Helicobacter. 2000;5:3–9.CrossRefGoogle Scholar
  63. 63.
    Gomez LM, Parry S. Trophoblast infection with Chlamydia pneumoniae and adverse pregnancy outcomes associated with placental dysfunction. Am J Obstet Gynecol. 2009;200:521–6.CrossRefGoogle Scholar
  64. 64.
    Haggerty CL, Panum I, Uldum SA, Bass DC, Olsen J, Darville T, Eastman JM, Simhan HN, Roberts JM, Ness RB. Chlamydia trachomatis infection may increase the risk of preeclampsia. Pregnancy Hypertens. 2013;3:28–33.PubMedGoogle Scholar
  65. 65.
    Hollander WJ, Schalekamp-Timmermans S, Holster IL, Jaddoe VW, Hofman A, Moll HA, Perez-Perez GI, Blaser MJ, Steegers EA, Kuipers EJ. Helicobacter pylori colonization and pregnancies complicated by preeclampsia, spontaneous prematurity, and small for gestational age birth. Helicobacter. 2017;22:2. doi: 10.1111/hel.12364.Google Scholar
  66. 66.
    Elkhouly NI, Elkelani OA, Elhalaby AF, Shabana AA. Relation between Helicobacter pylori infection and severe pre-eclampsia complicated by intrauterine growth restriction in a rural area in Egypt. J Obstet Gynaecol. 2016;36:1046–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Xie F, Dadelszen P, Nadeau J. CMV infection, TLR-2 and-4 expression, and cytokine profiles in early-onset preeclampsia with HELLP syndrome. Am J Reprod Immunol. 2014;71:379–86.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Arechavaleta-Velasco F, Ma Y, Zhang J, McGrath CM, Parry S. Adeno-associated virus-2 (AAV-2) causes trophoblast dysfunction, and placental AAV-2 infection is associated with preeclampsia. Am J Pathol. 2006;168:1951–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Arechavaleta-Velasco F, Gomez L, Ma Y, Zhao J, McGrath C, Sammel M, Nelson D, Parry S. Adverse reproductive outcomes in urban women with adeno-associated virus-2 infections in early pregnancy. Hum Reprod. 2008;23:29–36.PubMedCrossRefGoogle Scholar
  70. 70.
    Rustveld L, Ness R, Costantino J, Roberts J. Serological association between primary infections with herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), cytomegalovirus (CMV) and Epstein Barr virus (EBV) and the risk of preeclampsia. Am J Epidemiol. 2003;157:S74.CrossRefGoogle Scholar
  71. 71.
    Trogstad LI, Eskild A, Bruu AL, Jeansson S, Jenum PA. Is preeclampsia an infectious disease? Acta Obstet Gynecol Scand. 2001;80:1036–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Suy A, Martínez E, Coll O, Lonca M, Palacio M, de Lazzari E, Larrousse M, Milinkovic A, Hernández S, Blanco JL. Increased risk of pre-eclampsia and fetal death in HIV-infected pregnant women receiving highly active antiretroviral therapy. AIDS. 2006;20:59–66.PubMedCrossRefGoogle Scholar
  73. 73.
    Wimalasundera R, Larbalestier N, Smith J, De Ruiter A, Thom SM, Hughes A, Poulter N, Regan L, Taylor G. Pre-eclampsia, antiretroviral therapy, and immune reconstitution. Lancet. 2002;360:1152–4.PubMedCrossRefGoogle Scholar
  74. 74.
    Boer K, Nellen J, Patel D, Timmermans S, Tempelman C, Wibaut M, Sluman M, Van Der Ende M, Godfried M. The AmRo study: pregnancy outcome in HIV-1-infected women under effective highly active antiretroviral therapy and a policy of vaginal delivery. BJOG Int J Obstet Gynaecol. 2007;114:148–55.CrossRefGoogle Scholar
  75. 75.
    De Groot M, Corporaal L, Cronje H, Joubert G. HIV infection in critically ill obstetrical patients. Int J Obstet Gynaecol. 2003;81:9–16.CrossRefGoogle Scholar
  76. 76.
    Frank KA, Buchmann EJ, Schackis RC. Does human immunodeficiency virus infection protect against preeclampsia-eclampsia? Obstetr Gynecol. 2004;104:238–42.CrossRefGoogle Scholar
  77. 77.
    Calvert C, Ronsmans C. HIV and the risk of direct obstetric complications: a systematic review and meta-analysis. PLoS One. 2013;8:e74848.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Strand K, Odland M, Iversen AC, Nordbø S, Vik T, Austgulen R. Cytomegalovirus antibody status at 17–18 weeks of gestation and pre-eclampsia: a case–control study of pregnant women in Norway. BJOG Int J Obstet Gynaecol. 2012;119:1316–23.CrossRefGoogle Scholar
  79. 79.
    Haeri S, Shauer M, Dale M, Leslie J, Baker AM, Saddlemire S, Boggess K. Obstetric and newborn infant outcomes in human immunodeficiency virus–infected women who receive highly active antiretroviral therapy. Am J Obstet Gynecol. 2009;201:311–5.CrossRefGoogle Scholar
  80. 80.
    Boyajian T, Shah PS, Murphy KE. Risk of preeclampsia in HIV-positive pregnant women receiving HAART: a matched cohort study. J Obstet Gynaecol Can. 2012;34:136–41.PubMedCrossRefGoogle Scholar
  81. 81.
    Kalumba V, Moodley J, Naidoo T. Is the prevalence of pre-eclampsia affected by HIV/AIDS? A retrospective case-control study: cardiovascular topics. Cardiovasc J Afr. 2013;24:24–7.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hall D, Gebhardt S, Theron G, Grové D. Pre-eclampsia and gestational hypertension are less common in HIV infected women. Pregnancy Hypertens. 2014;4:91–6.PubMedGoogle Scholar
  83. 83.
    Landi B, Bezzeccheri V, Guerra B, Piemontese M, Cervi F, Cecchi L, Margarito E, Giannubilo SR, Ciavattini A, Tranquilli AL. HIV infection in pregnancy and the risk of gestational hypertension and preeclampsia. World J Cardiovasc Dis. 2014;4:257–67.CrossRefGoogle Scholar
  84. 84.
    Sansone M, Sarno L, Saccone G, Berghella V, Maruotti GM, Migliucci A, Capone A, Martinelli P. Risk of preeclampsia in human immunodeficiency virus-infected pregnant women. Obstet Gynecol. 2016;127:1027–32.PubMedCrossRefGoogle Scholar
  85. 85.
    Roberts J, Cooper D. Pathogenesis and genetics of pre-eclampsia. Lancet. 2001;357:53–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Kalayoglu MV, Byrne GI. Induction of macrophage foam cell formation by Chlamydia pneumoniae. J Infect Dis. 1998;177:725–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.PubMedCrossRefGoogle Scholar
  88. 88.
    Ross R. Atherosclerosis—an inflammatory disease. New Engl J Med. 1999;340:115–26.PubMedCrossRefGoogle Scholar
  89. 89.
    Rinehart BK, Terrone DA, Lagoo-Deenadayalan S, Barber WH, Martin JN, Bennett WA. Expression of the placental cytokines tumor necrosis factor α, interleukin 1β, and interleukin 10 is increased in preeclampsia. Am J Obstet Gynecol. 1999;181:915–20.PubMedCrossRefGoogle Scholar
  90. 90.
    Amory JH, Hitti J, Lawler R, Eschenbach DA. Increased tumor necrosis factor-α production after lipopolysaccharide stimulation of whole blood in patients with previous preterm delivery complicated by intra-amniotic infection or inflammation. Am J Obstet Gynecol. 2001;185:1064–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Benyo DF, Smarason A, Redman CW, Sims C, Conrad KP. Expression of inflammatory cytokines in placentas from women with preeclampsia 1. J Clin Endocrinol Metabol. 2001;86:2505–12.Google Scholar
  92. 92.
    Teran E, Escudero C, Moya W, Flores M, Vallance P, Lopez-Jaramillo P. Elevated C-reactive protein and pro-inflammatory cytokines in Andean women with pre-eclampsia. Int J Gynecol Obstet. 2001;75:243–9.CrossRefGoogle Scholar
  93. 93.
    LaMarca BD, Ryan MJ, Gilbert JS, Murphy SR, Granger JP. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr Hypertens Rep. 2007;9:480–5.PubMedCrossRefGoogle Scholar
  94. 94.
    López-Jaramillo P, Casas J, Serrano N. Preeclampsia: from epidemiological observations to molecular mechanisms. Braz J Med Biol Res. 2001;34:1227–35.PubMedCrossRefGoogle Scholar
  95. 95.
    Davidge ST. Oxidative stress and altered endothelial cell function in preeclampsia. Seminars in reproductive endocrinology. Stuttgart: Thieme Medical Publishers Inc; 1998. p. 65–73.Google Scholar
  96. 96.
    Belayet HM, Kanayama N, Khatun S, El Maradny E, Masui M, Tokunaga N, Sumimoto K, Kobayashi T, Terao T. Decreased renal and hepatic blood flow with preeclampsia-like histologic changes was obtained by stimulation of the celiac ganglion with LPS. Am J Perinatol. 1998;15:109–14.PubMedCrossRefGoogle Scholar
  97. 97.
    López-Jaramillo P, Herrera JA, Arenas-Mantilla M, Jáuregui IE, Mendoza MA. Subclinical infection as a cause of inflammation in preeclampsia. Am J Ther. 2008;15:373–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Cardaropoli S, Rolfo A, Todros T. Helicobacter pylori and pregnancy-related disorders. World J Gastroenterol. 2014;20:654.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Franceschi F, Di Simone N, D’ippolito S, Castellani R, Di Nicuolo F, Gasbarrini G, Yamaoka Y, Todros T, Scambia G, Gasbarrini A. Antibodies Anti-Caga Cross-React with Trophoblast Cells: A Risk Factor for Pre-Eclampsia? Helicobacter. 2012;17(6):426–34.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Franceschi F, Niccoli G, Ferrante G, Gasbarrini A, Baldi A, Candelli M, Feroce F, Saulnier N, Conte M, Roccarina D, Lanza GA, Gasbarrini G, Gentiloni SN, Crea F. CagA antigen of Helicobacter pylori and coronary instability: insight from a clinico-pathological study and a meta-analysis of 4241 cases. Atherosclerosis. 2009;202:535–42.PubMedCrossRefGoogle Scholar
  101. 101.
    Shiadeh Nourollahpour. Niyyati M, Fallahi S, Rostami A. Human parasitic protozoan infection to infertility: a systematic review. Parasitol Res. 2016;115:469–77.PubMedCrossRefGoogle Scholar
  102. 102.
    Rostami A, Seyyedtabaei SJ, Aghamolaie S, Behniafar H, Lasjerdi Z, Abdolrasouli A, Mehravar S, Alvarado-Esquivel C. Seroprevalence and risk factors associated with Toxoplasma gondii infection among rural communities in Northern IRAN. Rev Inst Med Trop Sao Paulo. 2016;58:70.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Nourollahpour Shiadeh M, Rostami A, Pearce B, Gholipourmalekabadi M, Newport D, Danesh M, et al. The correlation between Toxoplasma gondii infection and prenatal depression in pregnant women. Eur J Clin Microbiol Infect Dis. 2016;35:1829–35.PubMedCrossRefGoogle Scholar
  104. 104.
    Rostami A, Keshavarz H, Shojaee S, Mohebali M, Meamar AR. Frequency of Toxoplasma gondii in HIV Positive Patients from West of Iran by ELISA and PCR. Iran J Parasitol. 2014;9(4):474–81.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Todros T, Verdiglione P, Oggè G, Paladini D, Vergani P, Cardaropoli S. Low incidence of hypertensive disorders of pregnancy in women treated with spiramycin for Toxoplasma infection. Br J Clin Pharmacol. 2006;61:336–40.PubMedCrossRefGoogle Scholar
  106. 106.
    Alvarado-Esquivel C, Vázquez-Alaníz F, Sandoval-Carrillo AA, Salas-Pacheco JM, Hernández-Tinoco J, Sánchez-Anguiano LF, Liesenfeld O. Lack of association between Toxoplasma gondii infection and hypertensive disorders in pregnancy: a case–control study in a Northern Mexican population. Parasites Vectors. 2014;7:1.CrossRefGoogle Scholar
  107. 107.
    Fichorova RN. Impact of T. vaginalis infection on innate immune responses and reproductive outcome. J Reprod Immunol. 2009;2009(83):185–9.CrossRefGoogle Scholar
  108. 108.
    Than NG, Erez O, Wildman DE, Tarca AL, Edwin SS, Abbas A, Hotra J, Kusanovic JP, Gotsch F, Hassan SS. Severe preeclampsia is characterized by increased placental expression of galectin-1. J Matern Fetal Neonat Med. 2008;21:429–42.CrossRefGoogle Scholar
  109. 109.
    Fichorova RN, Trifonova RT, Gilbert RO, Costello CE, Hayes GR, Lucas JJ, Singh BN. Trichomonas vaginalis lipophosphoglycan triggers a selective upregulation of cytokines by human female reproductive tract epithelial cells. Infect Immun. 2006;74:5773–9.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Dellicour S, Tatem AJ, Guerra CA, Snow RW, ter Kuile FO. Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. PLoS Med. 2010;7:e1000221.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    van Eijk AM, Hill J, Noor AM, Snow RW, ter Kuile FO. Prevalence of malaria infection in pregnant women compared with children for tracking malaria transmission in sub-Saharan Africa: a systematic review and meta-analysis. Lancet Glob Health. 2015;3:617–28.CrossRefGoogle Scholar
  112. 112.
    Brabin BJ, Johnson PM. Placental malaria and pre-eclampsia through the looking glass backwards? J Reprod Immunol. 2005;65:1–15.PubMedCrossRefGoogle Scholar
  113. 113.
    Etard J-F, Kodio B, Ronsmans C. Seasonal variation in direct obstetric mortality in rural Senegal: role of malaria? Am J Trop Med Hyg. 2003;68:503–4.PubMedGoogle Scholar
  114. 114.
    Anya SE. Seasonal variation in the risk and causes of maternal death in the Gambia: malaria appears to be an important factor. Am J Trop Med Hyg. 2004;70:510–3.PubMedGoogle Scholar
  115. 115.
    Muehlenbachs A, Mutabingwa TK, Edmonds S, Fried M, Duffy PE. Hypertension and maternal–fetal conflict during placental malaria. PLoS Med. 2006;3:e446.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Hlimi T. Association of anemia, pre-eclampsia and eclampsia with seasonality: a realist systematic review. Health Place. 2015;31:180–92.PubMedCrossRefGoogle Scholar
  117. 117.
    Sartelet H, Rogier C, Milko-Sartelet I, Angel G, Michel G. Malaria associated pre-eclampsia in Senegal. Lancet. 1996;347:1121.PubMedCrossRefGoogle Scholar
  118. 118.
    Ekeleme Uzochukwu G, Kama Ugochukwu H, Otutu Elijah A, Ajunwa Kelechi V, Oha Ndubuisi OC, Ndimele Eugene C. Studies on the infections of Malaria, Human Immunodeficiency Virus and Hepatitis B Virus among Secondary School Students in Enugu West. Int J Sci Res Publ. 2016;6:36–43.Google Scholar
  119. 119.
    Ndao CT, Dumont A, Fievet N, Doucouré S, Gaye A, Lehesran J-Y. Placental malarial infection as a risk factor for hypertensive disorders during pregnancy in Africa: a case-control study in an urban area of Senegal, West Africa. Am J Epidemiol. 2009;170:847–53.PubMedCrossRefGoogle Scholar
  120. 120.
    Adam I, Elhassan EM, Mohmmed AA, Salih MM, Elbashir MI. Malaria and pre-eclampsia in an area with unstable malaria transmission in Central Sudan. Malar J. 2011;10:1.CrossRefGoogle Scholar
  121. 121.
    Dorman E, Shulman C, Kingdom J, Bulmer J, Mwendwa J, Peshu N, Marsh K. Impaired uteroplacental blood flow in pregnancies complicated by falciparum malaria. Ultrasound Obstet Gynecol. 2002;19:165–70.PubMedCrossRefGoogle Scholar
  122. 122.
    Conroy AL, Silver KL, Zhong K, Rennie M, Ward P, Sarma JV, Molyneux ME, Sled J, Fletcher JF, Rogerson S. Complement activation and the resulting placental vascular insufficiency drives fetal growth restriction associated with placental malaria. Cell Host Microbe. 2013;13:215–26.PubMedCrossRefGoogle Scholar
  123. 123.
    Muehlenbachs A, Fried M, Lachowitzer J, Mutabingwa TK, Duffy PE. Natural selection of FLT1 alleles and their association with malaria resistance in utero. Proc Natl Acad Sci. 2008;105:14488–91.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Conroy A, Serghides L, Finney C, Owino SO, Kumar S, Gowda DC, Liles WC, Moore JM, Kain KC. C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria. PLoS One. 2009;4:e4953.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Muehlenbachs A, Fried M, Lachowitzer J, Mutabingwa TK, Duffy PE. Genome-wide expression analysis of placental malaria reveals features of lymphoid neogenesis during chronic infection. J Immunol. 2007;179:557–65.PubMedCrossRefGoogle Scholar
  126. 126.
    Soto E, Romero R, Richani K, Espinoza J, Chaiworapongsa T, Nien JK, Edwin SS, Kim YM, Hong JS, Goncalves LF. Preeclampsia and pregnancies with small-for-gestational age neonates have different profiles of complement split products. J Matern Fetal Neonatal Med. 2010;23:646–57.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Saito S, Shiozaki A, Nakashima A, Sakai M, Sasaki Y. The role of the immune system in preeclampsia. Mol Asp Med. 2007;28:192–209.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Malihe Nourollahpour Shiadeh
    • 1
    • 2
  • Zahra Behboodi Moghadam
    • 2
  • Ishag Adam
    • 3
  • Vafa Saber
    • 5
  • Maryam Bagheri
    • 2
  • Ali Rostami
    • 4
    • 5
    • 6
  1. 1.Department of Reproductive Health, School of Nursing and MidwiferyTehran University of Medical SciencesTehranIran
  2. 2.Department of Midwifery and Reproductive Health, Nursing and Midwifery SchoolMazandaran University of Medical SciencesSariIran
  3. 3.Faculty of MedicineUniversity of KhartoumKhartoumSudan
  4. 4.Infectious Diseases and Tropical Medicine Research CenterBabol University of Medical SciencesBabolIran
  5. 5.Departments of Parasitology and Mycology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
  6. 6.Student Research committeeShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations