, Volume 44, Issue 4, pp 441–445 | Cite as

Corynebacterium diphtheriae in a free-roaming red fox: case report and historical review on diphtheria in animals

  • Andreas SingEmail author
  • Regina Konrad
  • Dominik M. Meinel
  • Norman Mauder
  • Ingo Schwabe
  • Reinhard Sting



Corynebacterium diphtheriae, the classical causative agent of diphtheria, is considered to be nearly restricted to humans. Here we report the first finding of a non-toxigenic C. diphtheriae biovar belfanti strain in a free-roaming wild animal.


The strain obtained from the subcutis and mammary gland of a dead red fox (Vulpes vulpes) was characterized by biochemical and molecular methods including MALDI-TOF and Multi Locus Sequence Typing. Since C. diphtheriae infections of animals, usually with close contact to humans, are reported only very rarely, an intense review comprising also scientific literature from the beginning of the 20th century was performed.


Besides the present case, only 11 previously reported C. diphtheriae animal infections could be verified using current scientific criteria.


Our report is the first on the isolation of C. diphtheriae from a wildlife animal without any previous human contact. In contrast, the very few unambiguous publications on C. diphtheriae in animals referred to livestock or pet animals with close human contact. C. diphtheriae carriage in animals has to be considered as an exceptionally rare event.


Diphtheria Corynebacterium diphtheriae Zoonosis Wildlife Animals Historical review 



We thank Wolfgang Schmidt, Sabine Wolf, Jasmin Fräßdorf, Barbara Depner and Christine Hartberger for excellent technical assistance. The study was partly supported by the Bavarian State Ministry of Health and Care as well as by the German Federal Ministry of Health via the Robert Koch-Institute and its National Reference Laboratories Network (09-47, FKZ 1369-359 and FKZ 415).

Compliance with ethical standards

Conflict of interest



  1. 1.
    Bonmarin I, Guiso N, Le Flèche-Matéos A, Patey O, Patrick AD, Levy-Bruhl D. Diphtheria: a zoonotic disease in France? Vaccine. 2009;27:4196–200.CrossRefPubMedGoogle Scholar
  2. 2.
    Wagner KS, White JM, Crowcroft NS, De Martin S, Mann G, Efstratiou A. Diphtheria in the United Kingdom, 1986–2008: the increasing role of Corynebacterium ulcerans. Epidemiol Infect. 2010;138:1519–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Dorella FA, Pacheco LG, Oliveira SC, Miyoshi A, Azevedo V. Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet Res. 2006;37:201–18.CrossRefPubMedGoogle Scholar
  4. 4.
    Lartigue MF, Monnet X, Le Flèche A, Grimont PA, Benet JJ, Durrbach A, Fabre M, Nordmann P. Corynebacterium ulcerans in an immunocompromised patient with diphtheria and her dog. J Clin Microbiol. 2005;43:999–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hogg RA, Wessels J, Hart J, Efstratiou A, De Zoysa A, Mann G, Allen T, Pritchard GC. Possible zoonotic transmission of toxigenic Corynebacterium ulcerans from companion animals in a human case of fatal diphtheria. Vet Rec. 2009;165:691–2.PubMedGoogle Scholar
  6. 6.
    De Zoysa A, Hawkey PM, Engler K, George R, Mann G, Reilly W, Taylor D, Efstratiou A. Characterization of toxigenic Corynebacterium ulcerans strains isolated from humans and domestic cats in the United Kingdom. J Clin Microbiol. 2005;43:4377–81.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Berger A, Huber I, Merbecks SS, Ehrhard I, Konrad R, Hörmansdorfer S, Hogardt M, Sing A. Toxigenic Corynebacterium ulcerans in woman and cat. Emerg Infect Dis. 2011;17:1767–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Foster G, Patterson T, Howie F, Simpson V, Davison N, Efstratiou A, Lai S. Corynebacterium ulcerans in free-ranging otters. Vet Rec. 2002;150:524.PubMedGoogle Scholar
  9. 9.
    Eisenberg T, Kutzer P, Peters M, Sing A, Contzen M, Rau J. Nontoxigenic tox-bearing Corynebacterium ulcerans infection among game animals, Germany. Emerg Infect Dis. 2014;20:448–52.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sting R, Ketterer-Pintur S, Contzen M, Mauder N, Sing A, Süß-Dombrowski C. Toxigenic Corynebacterium ulcerans isolated from a free-roaming red fox (Vulpes vulpes). Berl Munch Tierarztl Wochenschr. 2015;128:204–8.PubMedGoogle Scholar
  11. 11.
    Konrad R, Berger A, Huber I, Boschert V, Hörmansdorfer S, Busch U, Hogardt M, Schubert S, Sing A. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheria-associated bacteria. Euro Surveill. 2010;15 (pii: 19699).Google Scholar
  12. 12.
    Khamis A, Raoult D, La Scola B. Comparison between rpoB and 16S rRNA gene sequencing for molecular identification of 168 clinical isolates of Corynebacterium. J Clin Microbiol. 2005;43:1934–6.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Contzen M, Sting R, Blazey B, Rau J. Corynebacterium ulcerans from diseased wild boars. Zoonoses Public Health. 2011;58:479–88.CrossRefPubMedGoogle Scholar
  14. 14.
    Schuhegger R, Lindermayer M, Kugler R, Heesemann J, Busch U, Sing A. Detection of toxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans strains by a novel real-time PCR. J Clin Microbiol. 2008;46:2822–3.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Engler KH, Glushkevich T, Mazurova IK, George RC, Efstratiou A. A modified Elek test for detection of toxigenic corynebacteria in the diagnostic laboratory. J Clin Microbiol. 1997;35:495–8.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Bolt F, Cassiday P, Tondella ML, Dezoysa A, Efstratiou A, Sing A, Zasada A, Bernard K, Guiso N, Badell E, Rosso ML, Baldwin A, Dowson C. Multilocus sequence typing identifies evidence for recombination and two distinct lineages of Corynebacterium diphtheriae. J Clin Microbiol. 2010;48:4177–85.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schuhegger R, Schoerner C, Dlugaiczyk J, Lichtenfeld I, Trouillier A, Zeller-Peronnet V, Busch U, Berger A, Kugler R, Hörmansdorfer S, Sing A. Pigs as source for toxigenic Corynebacterium ulcerans. Emerg Infect Dis. 2009;15:1314–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Corboz L, Thoma R, Braun U, Zbinden R. Isolierung von of Corynebacterium diphtheriae subsp. belfanti bei einer Kuh mit chronisch-aktiver Dermatitis [Isolation of Corynebacterium diphtheriae subsp. belfanti from a cow with chronic active dermatitis]. Schweiz Arch Tierheilkd. 1996;138:596–9.PubMedGoogle Scholar
  19. 19.
    Kraszewska A, Anusz Z. Wystepowanie u zwierzat domowych Corynebacterium diphtheriae oraz innych gatunków rodzaju Corynebacterium, wywołujacych schorzenia u ludzi [Appearance in domestic animals of Corynebacterium diphtheriae and other Corynebacterium strains pathogenic for man]. Przegl Epidemiol. 1979;33:269–76.PubMedGoogle Scholar
  20. 20.
    Henricson B, Segarra M, Garvin J, Burns J, Jenkins S, Kim C, Popovic T, Golaz A, Akey B. Toxigenic Corynebacterium diphtheriae associated with an equine wound infection. J Vet Diagn Invest. 2000;12:253–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Leggett BA, De Zoysa A, Abbott YE, Leonard N, Markey B, Efstratiou A. Toxigenic Corynebacterium diphtheriae isolated from a wound in a horse. Vet Rec. 2010;166:656–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Hall AJ, Cassiday PK, Bernard KA, et al. Novel Corynebacterium diphtheriae in domestic cats. Emerg Infect Dis. 2010;16:688–91.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zakikhany K, Neal S, Efstratiou A. Emergence and molecular characterisation of non-toxigenic tox gene-bearing Corynebacterium diphtheriae biovar mitis in the United Kingdom, 2003–2012. Euro Surveill. 2014;19 (pii: 20819).Google Scholar
  24. 24.
    Detemmerman L, Rousseaux D, Efstratiou A, Schirvel C, Emmerechts K, Wybo I, Soetens O, Piérard D. Toxigenic Corynebacterium ulcerans in human and non-toxigenic Corynebacterium diphtheriae in cat. New Microbes New Infect. 2013;1:18–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Stănică E, Maximesco P, Stoian C, Pop A, Oprişan R, Potorac E. Niveau de l’immunité antitoxique et le portage de bacilles diphtherique chez les chevaux dans le stade actuel de diminution de la morbidite par la diphtherie [Level of antitoxic immunity and carriage of diphtheria bacilli in horses under the present circumstances of diminution of morbidity of diphtheria]. Arch Roum Pathol Exp Microbiol. 1968;37:555–62.Google Scholar
  26. 26.
    Cobbett L. Diphtheria in the horse. Lancet. 1900;2:573–4.CrossRefGoogle Scholar
  27. 27.
    Petrie GF. The toxigenic features of strains of the diphtheria bacillus isolated from horses and from a mule. J Hyg (Lond). 1921;20:99–102.CrossRefGoogle Scholar
  28. 28.
    Parish HJ, Okell CC. A note on the isolation of virulent diphtheria bacilli from wounds of horses. Br J Exp Pathol. 1926;7:173–4.PubMedCentralGoogle Scholar
  29. 29.
    Minett FC. Diphtheria bacilli in the horse. J Comp Pathol Ther. 1920;33:267–93.CrossRefGoogle Scholar
  30. 30.
    Kliewe H, Westhues M. Ueber das vorkommen von diphtheriebazillen in wunden bei pferden. Munch Med Wochenschr. 1925;72:587–9.Google Scholar
  31. 31.
    Richters CE. Das vorkommen echter diphtheriebazillen bei der druse des pferdes. Berl Tierarztl Wochenschr. 1935;26:401–6.Google Scholar
  32. 32.
    Greathead MM, Bisschop PJNR. A report on the occurrence of C. diphtheriae in dairy cattle. S Afr Med. 1963;37:1261–2.Google Scholar
  33. 33.
    Goldie W, Maddock ECG. A milk-borne outbreak of diphtheria. Lancet. 1943;241:285–6.CrossRefGoogle Scholar
  34. 34.
    Kißkalt K, Khreninger-Guggenberger JV, Seiser A. Zur pathogenese und epidemiologie der diphtherie. Munch Med Wochenschr. 1933;21:801–4.Google Scholar
  35. 35.
    Dost FH, Damerow R, Stolze F. Corynebacterium diphtheriae im rachenabstrich von hunden [Corynebacterium diphtheriae in pharyngeal smear of dogs]. Munch Med Wochenschr. 1956;98:708–10.PubMedGoogle Scholar
  36. 36.
    Simmons JS. Virulent diphtheria bacilli carried by cats. Am J Med Sci. 1920;160:589–94.CrossRefGoogle Scholar
  37. 37.
    Okewole PA, Odeyemi PS, Irokanulo EA, Durbi IA, Oyetunde IL. Corynebacterium diphtheriae isolated from guinea pigs. Indian Vet J. 1990;67:579–80.Google Scholar
  38. 38.
    Ramon G, Erber B. Sur l´ immunité antidiphtérique occulte chez le singe. C R Soc Biol (Paris). 1934;116:726–8.Google Scholar
  39. 39.
    Dold H, Weigmann F. Affen als Diphtheriebacillenträger. Z Hyg Infektionskr. 1934;116:154–7.CrossRefGoogle Scholar
  40. 40.
    B W. Domestic animals in relation to diphtheria. Nature 1923;111:576–7.Google Scholar
  41. 41.
    Sambon LW. The epidemiology of diphtheria in the light of a possible relationship between the diphtheritic affections of man and those of the lower animals. Lancet. 1908;171:1143–8.CrossRefGoogle Scholar
  42. 42.
    Glenny AT. Diphtheria antitoxin in the blood of normal horses. J Pathol Bacteriol. 1925;28:241–50.CrossRefGoogle Scholar
  43. 43.
    Nicol L. Evolution comparée depuis 1930 de la morbidité diphtérique humaine et de l´immunité naturelle antidiphtérique chez le cheval [Comparative evolution since 1930 of human diphtheria morbidity and of natural antidiphtheria immunity in the horse]. Bull Acad Natl Med. 1964;148:576–82.PubMedGoogle Scholar
  44. 44.
    Riegel P, Ruimy R, de Briel D, Prévost G, Jehl F, Christen R, Monteil H. Taxonomy of Corynebacterium diphtheriae and related taxa, with recognition of Corynebacterium ulcerans sp. nov. nom. rev. FEMS Microbiol Lett. 1995;126:271–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Bostock AD, Gilbert FR, Lewis D, Smith DC. Corynebacterium ulcerans infection associated with untreated milk. J Infect. 1984;9:286–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Higgs TM, Smith A, Cleverly LM, Neave FK. Corynebacterium ulcerans infections in a dairy herd. Vet Rec. 1967;81:34–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Hommez J, Devriese LA, Vaneechoutte M, Riegel P, Butaye P, Haesebrouck F. Identification of nonlipophilic corynebacteria isolated from dairy cows with mastitis. J Clin Microbiol. 1999;37:954–7.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Seto Y, Komiya T, Iwaki M, Kohda T, Mukamoto M, Takahashi M, Kozaki S. Properties of corynephage attachment site and molecular epidemiology of Corynebacterium ulcerans isolated from humans and animals in Japan. Jpn J Infect Dis. 2008;61:116–22.PubMedGoogle Scholar
  49. 49.
    Fox JG, Frost WW. Corynebacterium ulcerans mastitis in a bonnet macaque (Macaca radiata). Lab Anim Sci. 1974;24:820–2.PubMedGoogle Scholar
  50. 50.
    Venezia J, Cassiday PK, Marini RP, Shen Z, Buckley EM, Peters Y, Taylor N, Dewhirst FE, Tondella ML, Fox JG. Characterization of Corynebacterium species in macaques. J Med Microbiol. 2012;61:1401–8.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hirai-Yuki A, Komiya T, Suzaki Y, Ami Y, Katsukawa C, Takahashi M, Yamamoto A, Yamada YK. Isolation and characterization of toxigenic Corynebacterium ulcerans from 2 closed colonies of cynomolgus macaques (Macaca fascicularis) in Japan. Comp Med. 2013;63:272–8.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andreas Sing
    • 1
    • 2
    Email author
  • Regina Konrad
    • 1
    • 2
  • Dominik M. Meinel
    • 2
  • Norman Mauder
    • 3
  • Ingo Schwabe
    • 3
  • Reinhard Sting
    • 3
  1. 1.National Consiliary Laboratory for DiphtheriaBavarian Health and Food Safety AuthorityOberschleißheimGermany
  2. 2.Bavarian Health and Food Safety AuthorityOberschleißheimGermany
  3. 3.Chemical and Veterinary Investigations Office StuttgartFellbachGermany

Personalised recommendations