Advertisement

Infection

, Volume 43, Issue 4, pp 405–412 | Cite as

Antibiotic consumption after implementation of a procalcitonin-guided antimicrobial stewardship programme in surgical patients admitted to an intensive care unit: a retrospective before-and-after analysis

  • A. HohnEmail author
  • B. Heising
  • S. Hertel
  • G. Baumgarten
  • M. Hochreiter
  • S. Schroeder
Original Paper

Abstract

Purpose

To analyse antibiotic use density (AD)—World Health Organization defined daily doses/1,000 patient-days—before and after implementation of a local antimicrobial stewardship programme (ASP) in conjunction with a procalcitonin (PCT)-guided protocol in a surgical intensive care unit (ICU).

Methods

In this retrospective observational study, data on 2,422 ICU patients between 2010 and 2012 were analysed. In 2011, an ASP in conjunction with a PCT protocol had been introduced into clinical practice. In a multivariate analysis, hospital mortality, length of stay (LOS) in hospital and ICU LOS were adjusted for effects from effective cost weight, gender, and age. AD and changes in the use of antibiotic classes were analysed.

Results

AD decreased from 1,005.0 in 2010 to 791.9 in 2012 which is a total reduction of 21.2 %. Consumption of aminoglycosides, cephalosporins and quinolones showed a marked reduction, whereas the use of penicillins did not change significantly. The multivariate models revealed no relevant changes in mortality rate, ICU LOS and hospital LOS.

Conclusions

Implementation of an ASP in conjunction with a PCT protocol in 2011 was associated with a marked decrease in total AD and led to a significant change in the spectrum of antibiotics. Clinical outcomes appeared to remain unchanged over the study period.

Keywords

Antibiotic usage Intensive care unit (ICU) Surveillance Antimicrobial stewardship Procalcitonin 

Notes

Acknowledgments

S. Hertel as an employee of Thermo Fisher Scientific performed the statistical analysis. Data were generated as part of the routine work and no other kind of funding has been received. S. Schroeder served as consultant and has received payments from BRAHMS AG for speaking engagements. A. Hohn, S. Schroeder and B. Heising carried out data collection, contributed to the design of the study and drafted the manuscript. S. Hertel participated in the design of the study, performed the statistical analysis and drafted the manuscript. G. Baumgarten and M. Hochreiter participated in the design of the study and drafted the manuscript. All authors read and approved the final manuscript.

Conflict of interest

All other authors declare no conflict of interest.

References

  1. 1.
    Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–96. doi: 10.1097/01.ccm.0000217961.75225.e9.PubMedCrossRefGoogle Scholar
  2. 2.
    Armand-Lefevre L, Angebault C, Barbier F, Hamelet E, Defrance G, Ruppe E, et al. Emergence of imipenem-resistant gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob Agents Chemo. 2013;57:1488–95. doi: 10.1128/aac.01823-12.CrossRefGoogle Scholar
  3. 3.
    Kollef MH, Fraser VJ. Antibiotic resistance in the intensive care unit. Annals of internal medicine. 2001;134:298–314.PubMedCrossRefGoogle Scholar
  4. 4.
    Kaki R, Elligsen M, Walker S, Simor A, Palmay L, Daneman N. Impact of antimicrobial stewardship in critical care: a systematic review. J Antimicrob Chemo. 2011;66:1223–30. doi: 10.1093/jac/dkr137.CrossRefGoogle Scholar
  5. 5.
    Heyland DK, Johnson AP, Reynolds SC, Muscedere J. Procalcitonin for reduced antibiotic exposure in the critical care setting: a systematic review and an economic evaluation. Crit Care Med. 2011;39:1792–9. doi: 10.1097/CCM.0b013e31821201a5.PubMedCrossRefGoogle Scholar
  6. 6.
    Kopterides P, Siempos II, Tsangaris I, Tsantes A, Armaganidis A. Procalcitonin-guided algorithms of antibiotic therapy in the intensive care unit: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med. 2010;38:2229–41. doi: 10.1097/CCM.0b013e3181f17bf9.PubMedCrossRefGoogle Scholar
  7. 7.
    Matthaiou DK, Ntani G, Kontogiorgi M, Poulakou G, Armaganidis A, Dimopoulos G. An ESICM systematic review and meta-analysis of procalcitonin-guided antibiotic therapy algorithms in adult critically ill patients. Int Care Med. 2012;38:940–9. doi: 10.1007/s00134-012-2563-7.CrossRefGoogle Scholar
  8. 8.
    Prkno A, Wacker C, Brunkhorst FM, Schlattmann P. Procalcitonin-guided therapy in intensive care unit patients with severe sepsis and septic shock—a systematic review and meta-analysis. Crit Care. 2013;17:R291. doi: 10.1186/cc13157.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Schuetz P, Briel M, Christ-Crain M, Stolz D, Bouadma L, Wolff M, et al. Procalcitonin to guide initiation and duration of antibiotic treatment in acute respiratory infections: an individual patient data meta-analysis. Clin Infect Dis. 2012;55:651–62. doi: 10.1093/cid/cis464.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Tang H, Huang T, Jing J, Shen H, Cui W. Effect of procalcitonin-guided treatment in patients with infections: a systematic review and meta-analysis. Infection. 2009;37:497–507. doi: 10.1007/s15010-009-9034-2.PubMedCrossRefGoogle Scholar
  11. 11.
    Hayashi Y, Paterson DL. Strategies for reduction in duration of antibiotic use in hospitalized patients. Clin Infect Dis. 2011;52:1232–40. doi: 10.1093/cid/cir063.PubMedCrossRefGoogle Scholar
  12. 12.
    Albrich WC, Dusemund F, Bucher B, Meyer S, Thomann R, Kuhn F, et al. Effectiveness and safety of procalcitonin-guided antibiotic therapy in lower respiratory tract infections in “real life”: an International, Multicenter Poststudy Survey (ProREAL). Arch Int Med. 2012;172:715–22. doi: 10.1001/archinternmed.2012.770.CrossRefGoogle Scholar
  13. 13.
    Schuetz P, Batschwaroff M, Dusemund F, Albrich W, Burgi U, Maurer M, et al. Effectiveness of a procalcitonin algorithm to guide antibiotic therapy in respiratory tract infections outside of study conditions: a post-study survey. Eur J Clin Microb Infect Dis. 2010;29:269–77. doi: 10.1007/s10096-009-0851-0.CrossRefGoogle Scholar
  14. 14.
    Hohn A, Schroeder S, Gehrt A, Bernhardt K, Bein B, Wegscheider K, et al. Procalcitonin-guided algorithm to reduce length of antibiotic therapy in patients with severe sepsis and septic shock. BMC Infect Dis. 2013;13:158. doi: 10.1186/1471-2334-13-158.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Meyer E, Jonas D, Schwab F, Rueden H, Gastmeier P, Daschner FD. Design of a surveillance system of antibiotic use and bacterial resistance in German intensive care units (SARI). Infection. 2003;31:208–15.PubMedGoogle Scholar
  16. 16.
    Meyer E, Gastmeier P, Deja M, Schwab F. Antibiotic consumption and resistance: data from Europe and Germany. Int J Med Microb IJMM. 2013;303:388–95. doi: 10.1016/j.ijmm.2013.04.004.CrossRefGoogle Scholar
  17. 17.
    WHO Collaborating centre for drug statistics methodology ATC/DDD Index. http://www.who.ccno/atc_ddd_index.
  18. 18.
    Kuster SP, Ruef C, Bollinger AK, Ledergerber B, Hintermann A, Deplazes C, et al. Correlation between case mix index and antibiotic use in hospitals. J antimicrob chemother. 2008;62:837–42. doi: 10.1093/jac/dkn275.PubMedCrossRefGoogle Scholar
  19. 19.
    Aldeyab MA, Harbarth S, Vernaz N, Kearney MP, Scott MG, Darwish Elhajji FW, et al. The impact of antibiotic use on the incidence and resistance pattern of extended-spectrum beta-lactamase-producing bacteria in primary and secondary healthcare settings. British J Clin Pharmacol. 2012;74:171–9. doi: 10.1111/j.1365-2125.2011.04161.x.CrossRefGoogle Scholar
  20. 20.
    Dancer SJ, Kirkpatrick P, Corcoran DS, Christison F, Farmer D, Robertson C. Approaching zero: temporal effects of a restrictive antibiotic policy on hospital-acquired Clostridium difficile, extended-spectrum beta-lactamase-producing coliforms and meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 2013;41:137–42. doi: 10.1016/j.ijantimicag.2012.10.013.PubMedCrossRefGoogle Scholar
  21. 21.
    Livermore DM, Hope R, Reynolds R, Blackburn R, Johnson AP, Woodford N. Declining cephalosporin and fluoroquinolone non-susceptibility among bloodstream Enterobacteriaceae from the UK: links to prescribing change? J Antimicrob Chemother. 2013;68:2667–74. doi: 10.1093/jac/dkt212.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaier K, Hagist C, Frank U, Conrad A, Meyer E. Two time-series analyses of the impact of antibiotic consumption and alcohol-based hand disinfection on the incidences of nosocomial methicillin-resistant Staphylococcus aureus infection and Clostridium difficile infection. Infect Control Hosp Epidemiol Off J Soc Hosp Epidemiol Am. 2009;30:346–53. doi: 10.1086/596605.CrossRefGoogle Scholar
  23. 23.
    Pepin J, Saheb N, Coulombe MA, Alary ME, Corriveau MP, Authier S, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis Off Publ Infect Dis Soc Am. 2005;41:1254–60. doi: 10.1086/496986.CrossRefGoogle Scholar
  24. 24.
    Talpaert MJ. Gopal Rao G, Cooper BS, Wade P. Impact of guidelines and enhanced antibiotic stewardship on reducing broad-spectrum antibiotic usage and its effect on incidence of Clostridium difficile infection. J Antimicrob Chemother. 2011;66:2168–74. doi: 10.1093/jac/dkr253.PubMedCrossRefGoogle Scholar
  25. 25.
    Davey P, Brown E, Charani E, Fenelon L, Gould IM, Holmes A et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev. 2013;4:Cd003543. doi: 10.1002/14651858.CD003543.pub3.
  26. 26.
    Maechler F, Schwab F, Geffers C, Meyer E, Leistner R, Gastmeier P. Antibiotic stewardship in Germany: a cross-sectional questionnaire survey of 355 intensive care units. Infection. 2014;42:119–25. doi: 10.1007/s15010-013-0531-y.PubMedCrossRefGoogle Scholar
  27. 27.
    Fridkin SK, Steward CD, Edwards JR, Pryor ER, McGowan JE Jr, Archibald LK, et al. Surveillance of antimicrobial use and antimicrobial resistance in United States hospitals: project ICARE phase 2. Project Intensive Care Antimicrobial Resistance Epidemiology (ICARE) hospitals. Clinical infectious diseases : an official publication of the Infectious Diseases Society of. America. 1999;29:245–52. doi: 10.1086/520193.Google Scholar
  28. 28.
    Rhomberg PR, Jones RN, Sader HS. Results from the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) Programme: report of the 2001 data from 15 United States medical centres. Int J Antimicrob Agents. 2004;23:52–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Hsueh PR, Chen WH, Luh KT. Relationships between antimicrobial use and antimicrobial resistance in Gram-negative bacteria causing nosocomial infections from 1991–2003 at a university hospital in Taiwan. Int J Antimicrob Agents. 2005;26:463–72. doi: 10.1016/j.ijantimicag.2005.08.016.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Hohn
    • 1
    • 2
    Email author
  • B. Heising
    • 2
  • S. Hertel
    • 3
  • G. Baumgarten
    • 4
  • M. Hochreiter
    • 5
  • S. Schroeder
    • 2
  1. 1.Department of Anaesthesiology and Intensive Care MedicineUniversity Hospital of CologneCologneGermany
  2. 2.Department of Anaesthesiology, Intensive Care Medicine, Emergency Medicine and Pain TherapyHospital Dueren Gem. GmbHDuerenGermany
  3. 3.Thermo Fisher ScientificThermo Scientific BiomarkersHennigsdorfGermany
  4. 4.Department of Anaesthesiology and Intensive Care MedicineUniversity Hospital of BonnBonnGermany
  5. 5.Department of AnaesthesiologyUniversity Hospital HeidelbergHeidelbergGermany

Personalised recommendations