, Volume 42, Issue 1, pp 5–13 | Cite as

The current spectrum of infection in cancer patients with chemotherapy related neutropenia

  • Lior Nesher
  • Kenneth V. I. RolstonEmail author


Despite advancements in the treatment and supportive care of patients with malignant disorders, neutropenia remains the major side effect of most antineoplastic regimens. Infections occur frequently in neutropenic patients and are associated with considerable morbidity and mortality. The spectrum of infection continues to change, and is influenced by various factors including local epidemiology, the use of chemoprophylaxis, and the use of central venous catheters and other medical devices. Bacterial infections are common in the early stages of neutropenia, with fungal infections emerging if neutropenia persists beyond 7–10 days. Gram-positive organisms cause most bacteremic infections (although this trend appears to be changing), whereas infections at other sites are often caused by Gram-negative bacilli or are polymicrobial, especially if deep tissue infection is present. Candida spp., and Aspergillus spp., remain the most common fungal pathogens, although several opportunistic fungi have emerged. Resistance to antimicrobial and antifungal agents commonly used for the prevention and treatment of infections in neutropenic patients has become a significant problem. The prompt administration of appropriate, empiric, antimicrobial therapy, prior to the availability of microbiological culture results, is the standard of care. Up to date knowledge of the spectrum of infection and local susceptibility/resistance patterns, is critical. In this report, we describe the current spectrum of infection in patients with malignancies and neutropenia, and emphasize the fact that local and geographic differences are not infrequent. We recommend that individual institutions conduct periodic epidemiological surveys in order to have the latest data available for the optimal management of their patients.


Infection Neutropenia Chemotherapy Malignancy 


Conflict of interest



  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Crawford J, Dale DC, Lyman GH. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer. 2004;100(2):228–37.PubMedCrossRefGoogle Scholar
  3. 3.
    Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52(4):e56–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Chrischilles EA, Link BK, Scott SD, Delgado DJ, Fridman M. Factors associated with early termination of CHOP therapy and the impact on survival among patients with chemosensitive intermediate-grade non-Hodgkin’s lymphoma. Cancer Control. 2003;10(5):396–403.PubMedGoogle Scholar
  5. 5.
    Flowers CR, Seidenfeld J, Bow EJ, et al. Antimicrobial prophylaxis and outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2013;31(6):794–810.PubMedCrossRefGoogle Scholar
  6. 6.
    Baden LR, Bensinger W, Angarone M, et al. Prevention and treatment of cancer-related infections. J Natl Compr Canc Netw. 2012;10(11):1412–45.PubMedGoogle Scholar
  7. 7.
    Montassier E, Batard E, Gastinne T, Potel G, de La Cochetière MF. Recent changes in bacteremia in patients with cancer: a systematic review of epidemiology and antibiotic resistance. Eur J Clin Microbiol Infect Dis. 2013;32(7):841–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Rolston KV, Bodey GP, Safdar A. Polymicrobial infection in patients with cancer: an underappreciated and underreported entity. Clin Infect Dis. 2007;45(2):228–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Klastersky J, Ameye L, Maertens J, et al. Bacteraemia in febrile neutropenic cancer patients. Int J Antimicrob Agent. 2007;30(Suppl 1):S51–9.CrossRefGoogle Scholar
  10. 10.
    Nesher L, Rolston KVI. Neutropenic enterocolitis, a growing concern in the era of widespread use of aggressive chemotherapy. Clin Infect Dis. 2013;56(5):711–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Zell JA, Chang JC. Neoplastic fever: a neglected paraneoplastic syndrome. Support Care Cancer. 2005;13(11):870–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Sandoval C, Sinaki B, Weiss R, et al. Urinary tract infections in pediatric oncology patients with fever and neutropenia. Pediatr Hematol Oncol. 2012;29(1):68–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Cecinati V, Brescia L, Tagliaferri L, Giordano P, Esposito S. Catheter-related infections in pediatric patients with cancer. Eur J Clin Microbiol Infect Dis. 2012;31(11):2869–77.PubMedCrossRefGoogle Scholar
  14. 14.
    Yadegarynia D, Tarrand J, Raad I, Rolston K. Current spectrum of bacterial infections in patients with cancer. Clin Infect Dis. 2003;37(8):1144–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Singh R, Ray P, Das A, Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 2010;65(9):1955–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Wisplinghoff H, Seifert H. Wenzel RP. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States: Edmond MB; 2003.Google Scholar
  17. 17.
    Aslan S, Citak EC, Yis R, Degirmenci S, Arman D. Bacterial spectrum and antimicrobial susceptibility pattern of bloodstream infections in children with febrile neutropenia: experience of single center in southeast of Turkey. Indian J Microbiol. 2012;52(2):203–8.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Zinner SH. Changing epidemiology of infections in patients with neutropenia and cancer: emphasis on gram-positive and resistant bacteria. Clin Infect Dis. 1999;29(3):490–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Elting LS, Bodey GP, Fainstein V. Polymicrobial septicemia in the cancer patient. Medicine (Baltimore). 1986;65(4):218–25.CrossRefGoogle Scholar
  20. 20.
    Gudiol C, Bodro M, Simonetti A, et al. Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. Clin Microbiol Infect. 2013;19(5):474–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Samonis G, Vardakas KZ, Maraki S, et al. A prospective study of characteristics and outcomes of bacteremia in patients with solid organ or hematologic malignancies. Support Care Cancer. 2013;21(9):2521–2526.PubMedCrossRefGoogle Scholar
  22. 22.
    Cortés JA, Cuervo S, Gómez CA, Bermúdez D, Martínez T, Arroyo P. Febrile neutropenia in the tropics: a description of clinical and microbiological findings and their impact on inappropriate therapy currently used at an oncological reference center in Colombia. Biomedica. 2013;33(1):70–7.PubMedGoogle Scholar
  23. 23.
    Kang CI, Song JH, Chung DR, et al. Bloodstream infections in adult patients with cancer: clinical features and pathogenic significance of Staphylococcus aureus bacteremia. Support Care Cancer. 2012;20(10):2371–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Ram R, Farbman L, Leibovici L, et al. Characteristics of initial compared with subsequent bacterial infections among hospitalised haemato-oncological patients. Int J Antimicrob Agents. 2012;40(2):123–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the infectious diseases society of America. Clin Infect Dis. 2009;49(1):1–45.PubMedCrossRefGoogle Scholar
  26. 26.
    Kleiner E, Monk AB, Archer GL, Forbes BA. Clinical significance of Staphylococcus lugdunensis isolated from routine cultures. Clin Infect Dis. 2010;51(7):801–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Kjellander C, Björkholm M, Cherif H, Kalin M, Giske CG. Hematological: low all-cause mortality and low occurrence of antimicrobial resistance in hematological patients with bacteremia receiving no antibacterial prophylaxis: a single-center study. Eur J Haematol. 2012;88(5):422–30.PubMedCrossRefGoogle Scholar
  28. 28.
    Sakoulas G, Moise-Broder PA, Schentag J, Forrest A, Moellering RC, Eliopoulos GM. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol. 2004;42(6):2398–402.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Safdar A, Rolston KV. Vancomycin tolerance, a potential mechanism for refractory gram-positive bacteremia observational study in patients with cancer. Cancer. 2006;106(8):1815–20.PubMedCrossRefGoogle Scholar
  30. 30.
    van Hal SJ, Lodise TP, Paterson DL. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin Infect Dis. 2012;54(6):755–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55.PubMedCrossRefGoogle Scholar
  32. 32.
    Elting LS, Bodey GP, Keefe BH. Septicemia and shock syndrome due to viridans streptococci: a case-control study of predisposing factors. Clin Infect Dis. 1992;14(6):1201–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Bochud PY, Eggiman P, Calandra T, Van Melle G, Saghafi L, Francioli P. Bacteremia due to viridans streptococcus in neutropenic patients with cancer: clinical spectrum and risk factors. Clin Infect Dis. 1994;18(1):25–31.PubMedCrossRefGoogle Scholar
  34. 34.
    Han XY, Kamana M, Rolston KV. Viridans streptococci isolated by culture from blood of cancer patients: clinical and microbiologic analysis of 50 cases. J Clin Microbiol. 2006;44(1):160–5.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Rolston KV, Jiang Y, Matar M. VRE fecal colonization/infection in cancer patients. Bone Marrow Transpl. 2007;39(9):567–8.CrossRefGoogle Scholar
  36. 36.
    Liss BJ, Vehreschild JJ, Cornely OA, et al. Intestinal colonisation and blood stream infections due to vancomycin-resistant enterococci (VRE) and extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLE) in patients with haematological and oncological malignancies. Infection. 2012;40(6):613–619.PubMedCrossRefGoogle Scholar
  37. 37.
    Mihu CN, Rhomberg PR, Jones RN, Coyle E, Prince RA, Rolston KV. Escherichia coli resistance to quinolones at a comprehensive cancer center. Diagn Microbiol Infect Dis. 2010;67(3):266–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Kim SH, Kwon JC, Choi SM, et al. Escherichia coli and Klebsiella pneumoniae bacteremia in patients with neutropenic fever: factors associated with extended-spectrum β-lactamase production and its impact on outcome. Ann Hematol. 2013;92(4):533–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Patel G, Bonomo RA. “Stormy waters ahead”: global emergence of carbapenemases. Front Microbiol. 2013;4:48.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Pillai DR, McGeer A, Low DE. New Delhi metallo-β-lactamase-1 in Enterobacteriaceae: emerging resistance. CMAJ. 2011;183(1):59–64.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Cattaneo C, Antoniazzi F, Casari S, et al. P. aeruginosa bloodstream infections among hematological patients: an old or new question? Ann Hematol. 2012;91(8):1299–304.PubMedCrossRefGoogle Scholar
  42. 42.
    Rolston KV, Kontoyiannis DP, Yadegarynia D, Raad II. Nonfermentative gram-negative bacilli in cancer patients: increasing frequency of infection and antimicrobial susceptibility of clinical isolates to fluoroquinolones. Diagn Microbiol Infect Dis. 2005;51(3):215–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Rolston KV, Tarrand JJ. Pseudomonas aeruginosa—still a frequent pathogen in patients with cancer: 11-year experience at a comprehensive cancer center. Clin Infect Dis. 1999;29(2):463–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Toleman MA, Rolston K, Jones RN, Walsh TR. blaVIM-7, an evolutionarily distinct metallo-beta-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother. 2004;48(1):329–32.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Ohmagari N, Hanna H, Graviss L, et al. Risk factors for infections with multidrug-resistant Pseudomonas aeruginosa in patients with cancer. Cancer. 2005;104(1):205–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Demiraslan H, Sevim M, Pala Ç, et al. Risk factors influencing mortality related to Stenotrophomonas maltophilia infection in hematology-oncology patients. Int J Hematol. 2013;97(3):414–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Krueger TS, Clark EA, Nix DE. In vitro susceptibility of Stenotrophomonas maltophilia to various antimicrobial combinations. Diagn Microbiol Infect Dis. 2001;41(1–2):71–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Sood P, Seth T, Kapil A, et al. Emergence of multidrug resistant acinetobacter blood stream infections in febrile neutropenia patients with haematological cancers and bone marrow failure syndromes. J Indian Med Assoc. 2012;110(7):439–44.PubMedGoogle Scholar
  49. 49.
    El-Sharif A, Elkhatib WF, Ashour HM. Nosocomial infections in leukemic and solid-tumor cancer patients: distribution, outcome and microbial spectrum of anaerobes. Future Microbiol. 2012;7(12):1423–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen CY, Cheng A, Huang SY, et al. Clinical and microbiological characteristics of perianal infections in adult patients with acute leukemia. PLoS One. 2013;8(4):e60624.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Brook I, Frazier EH. Aerobic and anaerobic infection associated with malignancy. Support Care Cancer. 1998;6(2):125–31.PubMedCrossRefGoogle Scholar
  52. 52.
    Kontoyiannis DP, Marr KA, Park BJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010;50(8):1091–100.PubMedCrossRefGoogle Scholar
  53. 53.
    Colombo AL, Perfect J, DiNubile M, et al. Global distribution and outcomes for Candida species causing invasive candidiasis: results from an international randomized double-blind study of caspofungin versus amphotericin B for the treatment of invasive candidiasis. Eur J Clin Microbiol Infect Dis. 2003;22(8):470–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Bassetti M, Taramasso L, Nicco E, Molinari MP, Mussap M, Viscoli C. Epidemiology, species distribution, antifungal susceptibility and outcome of nosocomial candidemia in a tertiary care hospital in Italy. PLoS One. 2011;6(9):e24198.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Maschmeyer G. The changing epidemiology of invasive fungal infections: new threats. Int J Antimicrob Agents. 2006;27(Suppl 1):3–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Hachem R, Hanna H, Kontoyiannis D, Jiang Y, Raad I. The changing epidemiology of invasive candidiasis: candida glabrata and Candida krusei as the leading causes of candidemia in hematologic malignancy. Cancer. 2008;112(11):2493–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Steinbach WJ, Marr KA, Anaissie EJ, et al. Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance registry. J Infect. 2012;65(5):453–64.PubMedCrossRefGoogle Scholar
  58. 58.
    Girmenia C, Pagano L, Martino B, et al. Invasive infections caused by Trichosporon species and Geotrichum capitatum in patients with hematological malignancies: a retrospective multicenter study from Italy and review of the literature. J Clin Microbiol. 2005;43(4):1818–28.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Marty FM, Cosimi LA, Baden LR. Breakthrough zygomycosis after voriconazole treatment in recipients of hematopoietic stem-cell transplants. N Engl J Med. 2004;350(9):950–2.PubMedCrossRefGoogle Scholar
  60. 60.
    Campo M, Lewis RE, Kontoyiannis DP. Invasive fusariosis in patients with hematologic malignancies at a cancer center: 1998–2009. J Infect. 2010;60(5):331–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Lamaris GA, Chamilos G, Lewis RE, Safdar A, Raad II, Kontoyiannis DP. Scedosporium infection in a tertiary care cancer center: a review of 25 cases from 1989 to 2006. Clin Infect Dis. 2006;43(12):1580–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Saral R, Ambinder RF, Burns WH, et al. Acyclovir prophylaxis against herpes simplex virus infection in patients with leukemia. A randomized, double-blind, placebo-controlled study. Ann Intern Med. 1983;99(6):773–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Infectious Diseases, Infection Control and Employee HealthThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations