Infection

, Volume 41, Issue 2, pp 503–509 | Cite as

Risk factors for bacteriuria with carbapenem-resistant Klebsiella pneumoniae and its impact on mortality: a case–control study

  • S. Shilo
  • M. V. Assous
  • T. Lachish
  • P. Kopuit
  • T. Bdolah-Abram
  • A. M. Yinnon
  • Y. Wiener-Well
Clinical and Epidemiological Study

Abstract

Background

The objective of this study was to evaluate the mortality of and risk factors for bacteriuria due to carbapenem-resistant Klebsiella pneumoniae (CRKp) versus carbapenem-susceptible K. pneumoniae (CSKp) producing extended spectrum β lactamase (ESBL).

Methods

This was a retrospective case–control study in which 135 case-patients with bacteriuria due to CRKp were compared with 127 control patients with CSKp producing ESBL. In a first step, multivariate Cox regression and Kaplan–Meier survival analysis models were used to determine the difference in mortality between the two groups and risk factors for mortality. In a second step, a univariate analysis was used to identify risk factors for CRKp colonization.

Results

There were no significant demographic or clinical differences between the groups. In-hospital mortality in the study and control groups was 29 and 25 %, respectively (non-significant difference). Multivariate analysis revealed that the most important risk factor for mortality in both groups was being bed ridden [hazard ratio 2.2, 95 % confidence interval (CI) 1.23–3.93; P = 0.008]. Patients with CRKp bacteriuria had a longer hospitalization time with a mean ± standard deviation of 28 ± 33 days compared to 22 ± 28 days in the control group (P < 0.05). Several univariate risk factors for acquiring CRKp bacteriuria were identified: antibiotic use [odds ratio (OR) 1.93, 95 % CI 1.18–3.17, p = 0.008], especially colistin (OR 2.04, 95 % CI 1.04–4.02; P = 0.036), presence of a urinary catheter (OR 2.09, 95 % CI 1.2–3.63; P = 0.008), surgery (OR 3.94, 95 % CI 1.85–8.37; P = 0.0002), invasive procedures (OR 3.06, 95 % CI 1.61–5.8; P = 0.0004), and intensive care unit admission (OR 2.49, 95 % CI 1.18–5.37; P = 0.015).

Conclusion

Bacteriuria caused by CRKp as compared that caused by CSKp was not found to be a risk factor for death.

Keywords

Carbapenem resistance Klebsiella pneumoniae Multi-drug resistance Bacteriuria Urinary tract infection Nosocomial infection 

Notes

Conflict of interest

None.

References

  1. 1.
    Meier S, Weber R, Zbinden R, Ruef C, Hasse B. Extended-spectrum beta-lactamase-producing Gram-negative pathogens in community-acquired urinary tract infections: an increasing challenge for antimicrobial therapy. Infection. 2011;39:333–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Gona F, Mezzatesta ML, Corona D, Zerbo D, Scriffignano V, Stefani S, Veroux P, Veroux M. Klebsiella pneumoniae ESBL producers responsible for severe UTIs in a renal transplant unit. Infection. 2011;39:83–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9:228–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Raveh D, Rudensky B, Huerta M, Aviv Y, Yinnon AM. Use of time-trend analysis in the design of empirical antimicrobial treatment of urinary tract infection. Eur J Clin Microbiol Infect Dis. 2003;22:158–64.PubMedGoogle Scholar
  5. 5.
    MacKenzie FM, Forbes KJ, Dorai-John T, Amyes SG, Gould IM. Emergence of a carbapenem-resistant Klebsiella pneumoniae. Lancet. 2007;350:783.CrossRefGoogle Scholar
  6. 6.
    Navon-Venezia S, Chmelnitsky I, Leavitt A, Schwaber MJ, Schwartz D, Carmeli Y. Plasmid-mediated imipenem-hydrolyzing enzyme KPC-2 among multiple carbapenem-resistant Escherichia coli clones in Israel. Antimicrob Agents Chemother. 2006;50:3098–101.PubMedCrossRefGoogle Scholar
  7. 7.
    Tenover FC, Kalsi RK, Williams PP, et al. Carbapenem resistance in Klebsiella pneumoniae not detected by automated susceptibility testing. Emerg Infect Dis. 2006;12:1209–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Schwaber MJ, Lev B, Israeli A, Solter E, Smollan G, Rubinovitch B, Shalit I, Carmeli Y. Containment of a country-wide outbreak of carbapenem resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis. 2011;52:848–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Wiener-Well Y, Rudensky B, Yinnon AM, et al. Carriage rate of carbapenem-resistant Klebsiella pneumoniae in hospitalized patients during a national outbreak. J Hosp Infect. 2010;74:344–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Falagas ME, Rafailidis PI, Kofteridis D, et al. Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: a matched case control study. J Antimicrob Chemother. 2007;60:1124–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Schwaber MJ, Klarfeld-Lidji S, Navon-Venezia S, Schwartz D, Leavitt A, Carmeli Y. Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother. 2007;52:1028–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Ben-David D, Kordevani R, Keller N, Tal I, Marzel A, Gal-Mor O, Maor Y, Rahav G. Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect. 2012;18:54–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Kwak YG, Choi SH, Choo EJ, et al. Risk factors for the acquisition of carbapenem-resistant Klebsiella pneumoniae among hospitalized patients. Microb Drug Resist. 2005;11:165–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Cope M, Cevallos ME, Cadle RM, Darouiche RO, Musher DM, Trautner BW. Inappropriate treatment of catheter-associated asymptomatic bacteriuria in a tertiary care hospital. Clin Infect Dis. 2009;48:1182–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Bradford PA, Bratu S, Urban C. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clin Infect Dis. 2004;39:55–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 19th International supplement. CLSI document M100-S10. Wayne: Clinical Laboratory Standards Institute; 2009.Google Scholar
  17. 17.
    Henschke R, Yinnon AM, Rudensky B, Attias D, Raveh D. Assessment of the clinical significance of production of extended-spectrum-β-lactamase (ESBL) by Enterobacteriaceae. Infection. 2006;34:66–74.CrossRefGoogle Scholar
  18. 18.
    Raveh D, Yinnon AM, Broide E, Rudensky B. Susceptibilities of ESBL-producing Enterobacteriaceae to ertapenem, meropenem, and piperacillin-tazobactam, with and without clavulanic acid. Chemotherapy. 2007;53:185–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Yinnon AM, Butnaru A, Raveh D, Jerassy Z, Rudensky B. Klebsiella bacteraemia: community versus nosocomial infection. Q J Med. 1996;89:933–41.CrossRefGoogle Scholar
  20. 20.
    Bahagon Y, Raveh D, Schlesinger Y, Rudensky B, Yinnon AM. Prevalence and predictive features of bacteremic urinary tract infection in emergency department patients. Eur J Clin Microbiol Infect Dis. 2007;26:349–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Marchi M, Grilli E, Mongardi M, Bedosti C, Nobilio L, Moro ML. Prevalence of infections in long-term care facilities: how to read it? Infection. 2012;40:493–500.PubMedCrossRefGoogle Scholar
  22. 22.
    Burke JP. Nosocomial urinary tract infections. In: Mayhall CG, editor. Hospital epidemiology infection control. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2004. p. 267–86.Google Scholar
  23. 23.
    Salgavo CD. Prevention of catheter associated urinary tract infection. In: Wenzel RP, editor. Prevention and control of nosocomial infections. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 2004. p. 297–311.Google Scholar
  24. 24.
    Borer A, Saidel-Odes L, Riesenberg K, et al. Attributable mortality rate for carbapenem resistant pneumonia bacteremia. Infect Control Hosp Epidemiol. 2009;30:972–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol. 2008;29:1099–106.PubMedCrossRefGoogle Scholar
  26. 26.
    Kang CI, Kim SH, Kim DM, et al. Risk factors for and clinical outcomes of bloodstream infections caused by extended-spectrum beta-lactamase-producing Klebsiella pneumoniae. Infect Control Hosp Epidemiol. 2004;25:860–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Ben-David D, Maor Y, Keller N, et al. Potential role of active surveillance in the control of a hospital-wide outbreak of carbapenem-resistant Klebsiella pneumoniae infection. Infect Control Hosp Epidemiol. 2010;31:620–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Carmeli Y, Akova M, Cornaglia G, et al. Controlling the spread of carbapenemase-producing Gram-negatives; therapeutic approach and infection control. Clin Microbiol Infect. 2010;16:102–11.PubMedCrossRefGoogle Scholar
  29. 29.
    Miriagou V, Cornaglia G, Edelstein M, et al. Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clin Microbiol Infect. 2010;16:112–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Shilo
    • 1
  • M. V. Assous
    • 2
  • T. Lachish
    • 1
  • P. Kopuit
    • 1
  • T. Bdolah-Abram
    • 3
  • A. M. Yinnon
    • 1
    • 4
  • Y. Wiener-Well
    • 1
  1. 1.Infectious Disease UnitShaare Zedek Medical CenterJerusalemIsrael
  2. 2.Clinical Microbiology LaboratoryShaare Zedek Medical CenterJerusalemIsrael
  3. 3.Hebrew University–Hadassah Medical SchoolJerusalemIsrael
  4. 4.Division of Internal MedicineShaare Zedek Medical CenterJerusalemIsrael

Personalised recommendations