Infection

, 39:141 | Cite as

Clinical impact of methicillin-resistant Staphylococcus aureus bacteremia based on propensity scores

  • S. Y. Park
  • J. S. Son
  • I. H. Oh
  • J. M. Choi
  • M. S. Lee
Clinical and Epidemiological Study

Abstract

Background

Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen not only in nosocomial infections, but also in community-associated infections. The aim of this study was to evaluate the impacts of methicillin resistance on mortality, length of hospitalization, and hospital costs via propensity score matching in S. aureus bacteremia.

Patients and methods

A propensity-matched case–control study was conducted in a tertiary hospital in Korea from 2003 to 2008.

Results

A total of 266 patients who had clinically significant S. aureus bloodstream infections were investigated. Fifty-three propensity-matched case–control pairs with MRSA bacteremia were likely to have stayed in the hospital longer before developing bacteremia (mean 25.0 vs. 6.1 days; P = 0.01). However, after developing bacteremia, the differences in the mean duration of hospital stay was not significant (mean 35.0 vs. 28.7 days; P = 0.33). Similar numbers of MRSA and methicillin-susceptible S. aureus (MSSA) patients died (P = 0.48). The mean total hospital costs after S. aureus bacteremia increased more for MRSA patients compared to MSSA patients. However, this difference was not statistically significant ($9,369.6 vs. $8,355.8; P = 0.62).

Conclusions

This study indicates that MRSA bacteremia is not associated with higher risks of mortality or hospital costs. It is, however, associated with a substantial increase in the length of hospital stay as compared to MSSA bacteremia. This information may help clinicians and policymakers derive methods to control the impacts of MRSA infection.

Keywords

Methicillin-resistant Staphylococcus aureus Propensity scores Mortality Hospital costs Korea 

Notes

Conflict of interest

All authors report no conflicts of interest relevant to this article.

References

  1. 1.
    Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, Harriman K, Harrison LH, Lynfield R, Farley MM; Active Bacterial Core Surveillance Program of the Emerging Infections Program Network. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med. 2005;352:1436–44.PubMedCrossRefGoogle Scholar
  2. 2.
    National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32:470–85CrossRefGoogle Scholar
  3. 3.
    Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK; Active Bacterial Core surveillance (ABCs) MRSA Investigators. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298:1763–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Herold BC, Immergluck LC, Maranan MC, Lauderdale DS, Gaskin RE, Boyle-Vavra S, Leitch CD, Daum RS. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA. 1998;279:593–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Kim KM, Yoo JH, Choi JH, Park ES, Kim KS. The nationwide surveillance results of nosocomial infections along with antimicrobial resistance in intensive care units of sixteen university hospitals in Korea, 2004. Korean J Nosocomial Infect Control. 2006;11:79–86.Google Scholar
  6. 6.
    Haley RW, White JW, Culver DH, Hughes JM. The financial incentive for hospitals to prevent nosocomial infections under the prospective payment system. An empirical determination from a nationally representative sample. JAMA. 1987;257:1611–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Stone PW, Larson E, Kawar LN. A systematic audit of economic evidence linking nosocomial infections and infection control interventions: 1990–2000. Am J Infect Control. 2002;30:145–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Harbarth S, Rutschmann O, Sudre P, Pittet D. Impact of methicillin resistance on the outcome of patients with bacteremia caused by Staphylococcus aureus. Arch Intern Med. 1998;158:182–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Joffe MM, Rosenbaum PR. Invited commentary: propensity scores. Am J Epidemiol. 1999;150:327–33.PubMedGoogle Scholar
  10. 10.
    Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control. 1988;16:128–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O’Grady NP, Raad II, Rijnders BJ, Sherertz RJ, Warren DK. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49:1–45.PubMedCrossRefGoogle Scholar
  12. 12.
    National Committee for Clinical Laboratory Standards (NCCLS). Performance standards for antimicrobial susceptibility testing. Wayne: NCCLS; 2002.Google Scholar
  13. 13.
    McCabe WR, Jackson GG. Gram-negative bacteremia. Arch Intern Med. 1962;110:847–55.Google Scholar
  14. 14.
    Park YJ, Jeong JS, Park ES, Shin ES, Kim SH, Lee YS. Survey on the infection control of multidrug-resistant microorganisms in general hospitals in Korea. Korean J Nosocomial Infect Control. 2007;12:112–21.Google Scholar
  15. 15.
    Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–55.PubMedCrossRefGoogle Scholar
  16. 16.
    Parsons LS. Reducing bias in a propensity score matched-pair sample using Greedy matching techniques. In: Proceedings of the 26th Annual SAS Users Group International Conference, Long Beach, California, 22–25 April 2001. Cary: SAS Institute; 2001Google Scholar
  17. 17.
    Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol. 2005;26:166–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Lodise TP, McKinnon PS. Clinical and economic impact of methicillin resistance in patients with Staphylococcus aureus bacteremia. Diagn Microbiol Infect Dis. 2005;52:113–22.PubMedCrossRefGoogle Scholar
  19. 19.
    Reed SD, Friedman JY, Engemann JJ, Griffiths RI, Anstrom KJ, Kaye KS, Stryjewski ME, Szczech LA, Reller LB, Corey GR, Schulman KA, Fowler VG Jr. Costs and outcomes among hemodialysis-dependent patients with methicillin-resistant or methicillin-susceptible Staphylococcus aureus bacteremia. Infect Control Hosp Epidemiol. 2005;26:175–83.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee H, Lee H, Lee K-H, Wan TTH. Comparing efficiency between public and private hospitals in South Korea. Int J Public Policy. 2008;3:430–42.CrossRefGoogle Scholar
  21. 21.
    Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36:53–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Whitby M, McLaws ML, Berry G. Risk of death from methicillin-resistant Staphylococcus aureus bacteraemia: a meta-analysis. Med J Aust. 2001;175:264–7.PubMedGoogle Scholar
  23. 23.
    Mylotte JM, Tayara A. Staphylococcus aureus bacteremia: predictors of 30-day mortality in a large cohort. Clin Infect Dis. 2000;31:1170–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Lodise TP, McKinnon PS, Swiderski L, Rybak MJ. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis. 2003;36:1418–23.PubMedCrossRefGoogle Scholar
  25. 25.
    Kim SH, Park WB, Lee KD, Kang CI, Bang JW, Kim HB, Kim EC, Oh MD, Choe KW. Outcome of inappropriate initial antimicrobial treatment in patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2004;54:489–97.PubMedCrossRefGoogle Scholar
  26. 26.
    Melzer M, Eykyn SJ, Gransden WR, Chinn S. Is methicillin-resistant Staphylococcus aureus more virulent than methicillin-susceptible S. aureus? A comparative cohort study of British patients with nosocomial infection and bacteremia. Clin Infect Dis. 2003;37:1453–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Soriano A, Martínez JA, Mensa J, Marco F, Almela M, Moreno-Martínez A, Sánchez F, Muñoz I, Jiménez de Anta MT, Soriano E. Pathogenic significance of methicillin resistance for patients with Staphylococcus aureus bacteremia. Clin Infect Dis. 2000;30:368–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Rojas EG, Liu LZ. Annual cost for the treatment of patients hospitalized with methicillin-resistant Staphylococcus aureus in the United States. Value Health. 2005;8:308.Google Scholar
  29. 29.
    Hansen S, Schwab F, Asensio A, Carsauw H, Heczko P, Klavs I, Lyytikäinen O, Palomar M, Riesenfeld-Orn I, Savey A, Szilagyi E, Valinteliene R, Fabry J, Gastmeier P. Methicillin-resistant Staphylococcus aureus (MRSA) in Europe: which infection control measures are taken? Infection. 2010;38:159–64.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • S. Y. Park
    • 1
  • J. S. Son
    • 1
  • I. H. Oh
    • 2
  • J. M. Choi
    • 2
  • M. S. Lee
    • 1
  1. 1.Division of Infectious Diseases, Department of Internal Medicine, School of MedicineKyung Hee UniversitySeoulKorea
  2. 2.Department of Preventive Medicine, School of MedicineKyung Hee UniversitySeoulKorea

Personalised recommendations