Advertisement

InFo Onkologie

, Volume 20, Supplement 1, pp 49–53 | Cite as

Ergänzung oder Alternative zur Chemotherapie?

RETRACTED ARTICLE: Immuntherapie des multiplen Myeloms

  • Katja Weisel
  • Lothar Kanz
fortbildung

Die Zulassung von zwei monoklonalen Antikörpern für die Behandlung des multiplen Myeloms (MM) im Jahr 2016 durch die europäische Arzneimittel-Agentur (EMA) hat eine neue Ära in der zielgerichteten Immuntherapie des MM eingeleitet. Mittlerweile stehen verschiedene neue Ansätze in der Immuntherapie des MM zur Verfügung, die auf unterschiedlichen Therapiestrategien basieren.

Literatur

  1. 1.
    Morgan GJ et al. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12(5):335–48.CrossRefGoogle Scholar
  2. 2.
    Walker BA et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. J Clin Oncol. 2015;33(33):3911–20.CrossRefGoogle Scholar
  3. 3.
    Kristinsson SY et al. Monoclonal gammopathy of undetermined significance and risk of infections: a population-based study. Haematologica. 2012;97(6):854–8.CrossRefGoogle Scholar
  4. 4.
    Romano A et al. Immunological dysregulation in multiple myeloma microenvironment. Biomed Res Int. 2014;2014:198539.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Liu J et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-ã and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood. 2007;110(1):296–304.CrossRefGoogle Scholar
  6. 6.
    Prabhala RH et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood. 2010;115(26):5385–92.CrossRefGoogle Scholar
  7. 7.
    Bryant C et al. Long-term survival in multiple myeloma is associated with a distinct immunological profile, which includes proliferative cytotoxic T-cell clones and a favourable Treg/Th17 balance. Blood Cancer J. 2013;3:e148.CrossRefGoogle Scholar
  8. 8.
    Khoo TL et al. Interferon-alpha in the treatment of multiple myeloma. Curr Drug Targets. 2011;12(3):437–46.CrossRefGoogle Scholar
  9. 9.
    San-Miguel J et al. Phase 2 randomized study of bortezomib-melphalan-prednisone with or without siltuximab (anti-IL-6) in multiple myeloma. Blood. 2014;123(26):4136–42.CrossRefGoogle Scholar
  10. 10.
    Hansson M et al. A Phase I Dose-Escalation Study of Antibody BI-505 in Relapsed/Refractory Multiple Myeloma. Clin Cancer Res. 2015;21(12):2730–6.CrossRefGoogle Scholar
  11. 11.
    Spencer AP et al. A phase I study of the anti-kappa monoclonal antibody, MDX-1097, in previously treated multiple myeloma patients. J Clin Oncol. 2010;28(15_suppl):Abstr 8143.CrossRefGoogle Scholar
  12. 12.
    Hsi ED et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14(9):2775–84.CrossRefGoogle Scholar
  13. 13.
    Balasa B et al. Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-α pathways. Cancer Immunol Immunother. 2015;64(1):61–73.CrossRefGoogle Scholar
  14. 14.
    Lonial S et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol. 2012;30(16):1953–9.CrossRefGoogle Scholar
  15. 15.
    Lonial S et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2015;373(7):621–31.CrossRefGoogle Scholar
  16. 16.
    Jakubowiak AJ et al. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol. 2012;30(16):1960–5.CrossRefGoogle Scholar
  17. 17.
    Lokhorst HM et al. Targeting CD38 with Daratumumab Monotherapy in Multiple Myeloma. N Engl J Med. 2015;373(13):1207–19.CrossRefGoogle Scholar
  18. 18.
    Lonial S et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet. 2016;387(10027):1551–60.CrossRefGoogle Scholar
  19. 19.
    de Weers M et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186(3):1840–8.CrossRefGoogle Scholar
  20. 20.
    Krejcik J et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 2016;128(3):384–94.CrossRefGoogle Scholar
  21. 21.
    Casneuf T et al. Pharmacodynamic Relationship between Natural Killer Cells and Daratumumab Exposure in Relapsed/Refractory Multiple Myeloma. Haematologica 2016;101(S 1):87–8.Google Scholar
  22. 22.
    Dimopoulos MA et al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016;375(14):1319–31.CrossRefGoogle Scholar
  23. 23.
    Palumbo A et al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016;375(8):754–66.CrossRefGoogle Scholar
  24. 24.
    Weisel K et al. Efficacy of Daratumumab in Combination with Lenalidomide Plus Dexamethasone (DRd) or Bortezomib Plus Dexamethasone (DVd) in Relapsed or Refractory Multiple Myeloma RRMM) Based on Cytogenetic Risk Status. J Clin Oncol. 2017;35(15_suppl):8006.CrossRefGoogle Scholar
  25. 25.
    Perez-Andres M et al. Clonal plasma cells from monoclonal gammopathy of undetermined significance, multiple myeloma and plasma cell leukemia show different expression profiles of molecules involved in the interaction with the immunological bone marrow microenvironment. Leukemia. 2005;19(3):449–55.CrossRefGoogle Scholar
  26. 26.
    de Haart SJ et al. Sepantronium bromide (YM155) improves daratumumab-mediated cellular lysis of multiple myeloma cells by abrogation of bone marrow stromal cell-induced resistance. Haematologica. 2016;101(8):e339–42.CrossRefGoogle Scholar
  27. 27.
    Tembhare P et al. Antigenic drift in relapsed extramedullary multiple myeloma: plasma cells without CD38 expression. Leuk Lymphoma. 2012;53(4):721–4.CrossRefGoogle Scholar
  28. 28.
    Martin TS et al. A Phase I Trial of Sar650984, a Cd38 Monoclonal Antibody, in Relapsed or Refractory Multiple Myeloma. Haematologica. 2014;99:519–519.CrossRefGoogle Scholar
  29. 29.
    Raab MS et al. A Phase I/IIa Study of the CD38 Antibody MOR202 Alone and in Combination with Pomalidomide or Lenalidomide in Patients with Relapsed or Refractory Multiple Myeloma. Blood. 2016;128(22):1152.Google Scholar
  30. 30.
    Rotolo A et al. The prospects and promise of chimeric antigen receptor immunotherapy in multiple myeloma. Br J Haematol. 2016;173(3):350–64.CrossRefGoogle Scholar
  31. 31.
    Linette GP et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6):863–71.CrossRefGoogle Scholar
  32. 32.
    Maude SL et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.CrossRefGoogle Scholar
  33. 33.
    Garfall AL et al. Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma. N Engl J Med. 2015;373(11):1040–7.CrossRefGoogle Scholar
  34. 34.
    Garfall AL et al. Safety and efficacy of anti-CD19 chimeric antigen receptor (CAR)-modified autologous T cells (CTL019) in advanced multiple myeloma. J Clin Oncol. 2015;33(15, Suppl):Abstr 8517.Google Scholar
  35. 35.
    Maude SL et al. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125(26):4017–23.CrossRefGoogle Scholar
  36. 36.
    Xu XJ, Tang YM. Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Letters. 2014;343(2):172–8.CrossRefGoogle Scholar
  37. 37.
    Ali SA et al. Remissions of Multiple Myeloma during a First-in-Humans Clinical Trial of T Cells Expressing an Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor. Blood. 2015;126(23):LBA-1.Google Scholar
  38. 38.
    Duell J et al. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia. 2017 Feb 24. [Epub ahead of print].Google Scholar
  39. 39.
    Lesokhin AM et al. Preliminary Results of a Phase I Study of Nivolumab (BMS-936558) in Patients with Relapsed or Refractory Lymphoid Malignancies. Blood. 2014;124(21):291.Google Scholar
  40. 40.
    San Miguel J et al. Pembrolizumab in Combination with Lenalidomide and Low-Dose Dexamethasone for Relapsed/Refractory Multiple Myeloma (RRMM): Keynote-023. Blood. 2015;126(23):505.Google Scholar
  41. 41.
    Garban F et al. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99-03 trial) with tandem autologous stem cell transplantation (IFM99-04 trial) in high-risk de novo multiple myeloma. Blood. 2006;107(9):3474–80.CrossRefGoogle Scholar
  42. 42.
    Rosinol L et al. A prospective PETHEMA study of tandem autologous transplantation versus autograft followed by reduced-intensity conditioning allogeneic transplantation in newly diagnosed multiple myeloma. Blood. 2008;112(9):3591–3.CrossRefGoogle Scholar
  43. 43.
    Bjorkstrand B et al. Tandem autologous/reduced-intensity conditioning allogeneic stem-cell transplantation versus autologous transplantation in myeloma: long-term follow-up. J Clin Oncol. 2011;29(22):3016–22.CrossRefGoogle Scholar
  44. 44.
    Knop S et al. Autologous Followed By Allogeneic Versus Tandem-Autologous Stem Cell Transplant in Newly Diagnosed FISH-del13q Myeloma. Blood. 2014;124(21):43.Google Scholar
  45. 45.
    Bruno B et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med. 2007;356(11):1110–20.CrossRefGoogle Scholar
  46. 46.
    Krishnan A et al. Autologous haemopoietic stem-cell transplantation followed by allogeneic or autologous haemopoietic stem-cell transplantation in patients with multiple myeloma (BMT CTN 0102): a phase 3 biological assignment trial. Lancet Oncol. 2011;12(13):1195–203.CrossRefGoogle Scholar
  47. 47.
    Lokhorst HM et al. Donor versus no-donor comparison of newly diagnosed myeloma patients included in the HOVON-50 multiple myeloma study. Blood. 2012;119(26):6219–25.CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.Klinik für Innere Medizin IIUniversitätsklinikum TübingenTübingenDeutschland
  2. 2.Klinik für Innere Medizin II - Onkologie, Hämatologie, Klinische Immunologie, Rheumatologie und PulmologieUniversitätsklinikum TübingenTübingenDeutschland

Personalised recommendations