Advertisement

Combination of Mesenchymal Stem Cells, Cartilage Pellet and Bioscaffold Supported Cartilage Regeneration of a Full Thickness Articular Surface Defect in Rabbits

  • Mohammed Abbas
  • Mohammed Alkaff
  • Asim Jilani
  • Haneen Alsehli
  • Laila Damiati
  • Mamdooh Kotb
  • Moahmmed Abdelwahed
  • Fahad Alghamdi
  • Gauthaman Kalamegam
Original Article
  • 5 Downloads

Abstract

BACKGROUND:

Mesenchymal stem cells (MSCs) and/or biological scaffolds have been used to regenerate articular cartilage with variable success. In the present study we evaluated cartilage regeneration using a combination of bone marrow (BM)-MSCs, HyalofastTM and/or native cartilage tissue following full thickness surgical cartilage defect in rabbits.

METHODS:

Full-thickness surgical ablation of the medial-tibial cartilage was performed in New Zealand white (NZW) rabbits. Control rabbits (Group-I) received no treatment; Animals in other groups were treated as follows. Group-II: BM-MSCs (1 × 106 cells) + HyalofastTM; Group-III: BMMSCs (1 × 106 cells) + cartilage pellet (CP); and Group-IV: BM-MSCs (1 × 106 cells) + HyalofastTM + CP. Animals were sacrificed at 12 weeks and cartilage regeneration analyzed using histopathology, International Cartilage Repair Society (ICRS-II) score, magnetic resonance observation of cartilage repair tissue (MOCART) score and biomechanical studies.

RESULTS:

Gross images showed good tissue repair (Groups IV > III > Group II) and histology demonstrated intact superficial layer, normal chondrocyte arrangement, tidemark and cartilage matrix staining (Groups III and IV) compared to the untreated control (Group I) respectively. ICRS-II score was 52.5, 65.0, 66 and 75% (Groups I–IV) and the MOCART score was 50.0, 73.75 and 76.25 (Groups II–IV) respectively. Biomechanical properties of the regenerated cartilage tissue in Group IV closed resembled that of a normal cartilage.

CONCLUSION:

HyalofastTM together with BM-MSCs and CP led to efficient cartilage regeneration following full thickness surgical ablation of tibial articular cartilage in vivo in rabbits. Presence of hyaluronic acid in the scaffold and native microenvironment cues probably facilitated differentiation and integration of BM-MSCs.

Keywords

Osteoarthritis BM-MSCs Bio-scaffold Histo-pathology Biomechanics 

Notes

Acknowledgements

We acknowledge the financial support provided by the “Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells”; the stem cell laboratory facility at CEGMR and the animal facility at King Fahd Medical Research Centre, King Abdulaziz University.

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical statement

This manuscript has not been published previously in any other journal or language. The study protocol was approved by the Institutional Review Board (IACUC no. 113-157).

References

  1. 1.
    Keuttner K, Goldberg VM. Osteoarthritic disorders. Rosemont: American Academy of Orthopedic Surgeons; 1995. p. 21–3.Google Scholar
  2. 2.
    Creamer P, Hochberg MC. Osteoarthritis. Lancet. 1997;16:503–8.CrossRefGoogle Scholar
  3. 3.
    Arden NK, Leyland KM. Osteoarthritis year 2013 in review: clinical. Osteoarthritis Cartilage. 2013;21:1409–13.CrossRefPubMedGoogle Scholar
  4. 4.
    Permuy M, Guede D, López-Peña M, Muñoz F, Caeiro JR, González-Cantalapiedra A. Effects of diacerein on cartilage and subchondral bone in early stages of osteoarthritis in a rabbit model. BMC Vet Res. 2015;11:143.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.PubMedGoogle Scholar
  6. 6.
    Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthritic femoral head cartilage. I. Chemical composition. Ann Rheum Dis. 1977;36:121–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Klisch SM, Asanbaeva A, Oungoulian SR, Masuda K, Thonar EJ, Davol A, et al. A cartilage growth mixture model with collagen remodeling: validation protocols. J Biomech Eng. 2008;130:031006.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    van Haaften EE, Ito K, van Donkelaar CC. The initial repair response of articular cartilage after mechanically induced damage. J Orthop Res. 2017;35:1265–73.CrossRefPubMedGoogle Scholar
  9. 9.
    Zuo Q, Lu S, Du Z, Friis T, Yao J, Crawford R, et al. Characterization of nano-structural and nano-mechanical properties of osteoarthritic subchondral bone. BMC Musculoskelet Disord. 2016;17:367.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ficklin T, Thomas G, Barthel JC, Asanbaeva A, Thonar EJ, Masuda K, et al. Articular cartilage mechanical and biochemical property relations before and after in vitro growth. J Biomech. 2007;40:3607–14.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res. 2002;402:21–37.CrossRefGoogle Scholar
  12. 12.
    Chubinskaya S, Haudenschild D, Gasser S, Stannard J, Krettek C, Borrelli J Jr. Articular cartilage injury and potential remedies. J Orthop Trauma. 2015;29 Suppl 12:S47–52.CrossRefPubMedGoogle Scholar
  13. 13.
    Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;391:S362–9.CrossRefGoogle Scholar
  14. 14.
    Gillogly SD. Treatment of large full-thickness chondral defects of the knee with autologous chondrocyte implantation. Arthroscopy. 2003;19 Suppl 1:147–53.CrossRefPubMedGoogle Scholar
  15. 15.
    Steinwachs M. New technique for cell-seeded collagen matrix-supported autologous chondrocyte transplantation. Arthroscopy. 2009;25:208–11.CrossRefPubMedGoogle Scholar
  16. 16.
    Schuette HB, Kraeutler MJ, McCarty EC. Matrix-assisted autologous chondrocyte transplantation in the knee: a systematic review of mid-to long-term clinical outcomes. Orthop J Sports Med. 2017;5:2325967117709250.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kalamegam G, Abbas M, Gari M, Alsehli H, Kadam R, Alkaff M, et al. Pelleted bone marrow derived mesenchymal stem cells are better protected from the deleterious effects of arthroscopic heat shock. Front Physiol. 2016;7:180.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mainil-Varlet P, Van Damme B, Nesic D, Knutsen G, Kandel R, Roberts S. A new histology scoring system for the assessment of the quality of human cartilage repair: ICRS II. Am J Sports Med. 2010;38:880–90.CrossRefPubMedGoogle Scholar
  19. 19.
    Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. 2006;57:16–23.CrossRefPubMedGoogle Scholar
  20. 20.
    Sato M, Uchida K, Nakajima H, Miyazaki T, Guerrero AR, Watanabe S, et al. Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res Ther. 2012;14:R31.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Toghraie FS, Chenari N, Gholipour MA, Faghih Z, Torabinejad S, Dehghani S, et al. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit. Knee. 2011;18:71–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Aleksander-Konert E, Paduszyński P, Zajdel A, Dzierżewicz Z, Wilczok A. In vitro chondrogenesis of Wharton’s jelly mesenchymal stem cells in hyaluronic acid-based hydrogels. Cell Mol Biol Lett. 2016;21:11.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pohlig F, Guell F, Lenze U, Lenze FW, Mühlhofer HM, Schauwecker J, et al. Hyaluronic acid suppresses the expression of metalloproteinases in osteoarthritic cartilage stimulated simultaneously by interleukin 1β and mechanical load. PLoS One. 2016;11:e0150020.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lamo-Espinosa JM, Mora G, Blanco JF, Granero-Moltó F, Nuñez-Córdoba JM, Sánchez-Echenique C, et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). J Transl Med. 2016;14:246.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Singh A, Goel SC, Gupta KK, Kumar M, Arun GR, Patil H, et al. The role of stem cells in osteoarthritis. An experimental study in rabbits. Bone Joint Res. 2014;3:32–7.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jang KM, Lee JH, Park CM, Song HR, Wang JH. Xenotransplantation of human mesenchymal stem cells for repair of osteochondral defects in rabbits using osteochondral biphasic composite constructs. Knee Surg Sports Traumatol Arthrosc. 2014;22:1434–44.CrossRefPubMedGoogle Scholar
  27. 27.
    Saulnier N, Viguier E, Perrier-Groult E, Chenu C, Pillet E, Roger T, et al. Intra-articular administration of xenogeneic neonatal Mesenchymal Stromal Cells early after meniscal injury down-regulates metalloproteinase gene expression in synovium and prevents cartilage degradation in a rabbit model of osteoarthritis. Osteoarthritis Cartilage. 2015;23:122–33.CrossRefPubMedGoogle Scholar
  28. 28.
    Griffin M, Premakumar Y, Seifalian A, Butler PE, Szarko M. Biomechanical characterization of human soft tissues using indentation and tensile testing. J Vis Exp. 2016.  https://doi.org/10.3791/54872.Google Scholar
  29. 29.
    Xia Y, Zheng S, Szarko M, Lee J. Anisotropic properties of bovine nasal cartilage. Microsc Res Tech. 2012;75:300–6.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Tissue Engineering and Regenerative Medicine Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Mohammed Abbas
    • 1
    • 2
  • Mohammed Alkaff
    • 1
    • 2
  • Asim Jilani
    • 3
  • Haneen Alsehli
    • 4
  • Laila Damiati
    • 5
  • Mamdooh Kotb
    • 6
  • Moahmmed Abdelwahed
    • 7
  • Fahad Alghamdi
    • 8
  • Gauthaman Kalamegam
    • 2
    • 9
    • 10
  1. 1.Department of Orthopaedic Surgery, Faculty of MedicineKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  2. 2.Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem CellsKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  3. 3.Center of NanotechnologyKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  4. 4.Center of Innovation in Personalized Medicine, Faculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  5. 5.Stem Cells Unit, King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  6. 6.Department of Radiology, Faculty of MedicineKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  7. 7.Department of Pathology, Faculty of MedicineUniversity of JeddahJeddahKingdom of Saudi Arabia
  8. 8.Department of Pathology, Faculty of MedicineKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  9. 9.Stem Cells Unit, Center of Excellence in Genomic Medicine Research (CEGMR)King Abdulaziz University (KAU)JeddahKingdom of Saudi Arabia
  10. 10.Faculty of MedicineAIMST UniversityBedong, Kedah Darul AmanMalaysia

Personalised recommendations