Tissue Engineering and Regenerative Medicine

, Volume 13, Issue 4, pp 375–387 | Cite as

Grafting collagen on poly (lactic acid) by a simple route to produce electrospun scaffolds, and their cell adhesion evaluation

  • Alida Ospina-Orejarena
  • Ricardo Vera-Graziano
  • Maria Monica Castillo-Ortega
  • Juan Paulo Hinestroza
  • Mabel Rodriguez-Gonzalez
  • Laura Palomares-Aguilera
  • Marissa Morales-Moctezuma
  • Alfredo Maciel-Cerda
Original Article Tissue Engineering

Abstract

Increasing bioactivity and mechanical properties of polymers to produce more suitable scaffold for tissue engineering is a recurrent goal in the development of new biomedical materials. In this study, collagen-functionalized poly (lactic acid), PLA, was obtained by means of a simple grafting route, and electrospun scaffolds were produced to grow cells in vitro; their bioactivity was compared with scaffolds made of physical blends of PLA and collagen. Grafting was verified via nuclear magnetic resonance, attenuated total reflection-Fourier transform infrared and X-ray photoelectron spectroscopy. The cell adhesion performance of the scaffolds was studied using macrophages. Elastic modulus (74.7 megapascals) and tensile strength (3.0 megapascals) of the scaffold made from PLA grafted with collagen were substantially higher than the scaffolds made from physical blends of collagen and PLA: 32 and 2.16 megapascals, respectively, implying a more resistant material because of the chemical bond of the polypeptide to PLA. Besides, the fibers had more uniform diameter without defects. Scaffolds made from PLA grafted with collagen presented four-fold increase in cell adhesion than those of PLA blended with collagen. Furthermore, cell spreading within the scaffolds occurred only when collagen-functionalized poly (lactic acid) was used. These results open a new option for the easy tailoring of nanofiber-based scaffolds in three dimensions for tissue engineering.

Key Words

Poly (lactic acid) Collagen Grafting Electrospun scaffold Cell adhesion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laurie GW, Horikoshi S, Killen PD, Segui-Real B, Yamada Y. In situ hybridization reveals temporal and spatial changes in cellular expression of mRNA for a laminin receptor, laminin, and basement membrane (type IV) collagen in the developing kidney. J Cell Biol 1989;109:1351–1362.CrossRefPubMedGoogle Scholar
  2. 2.
    Sanes JR, Engvall E, Butkowski R, Hunter DD. Molecular heterogeneity of basal laminae: isoforms of laminin and collagen IVat the neuromuscular junction and elsewhere. J Cell Biol 1990;111:1685–1699.CrossRefPubMedGoogle Scholar
  3. 3.
    Werb Z, Chin JR. Extracellular matrix remodeling during morphogenesis. Ann N YAcad Sci 1998;857:110–118.CrossRefGoogle Scholar
  4. 4.
    Boudreau N, Myers C, Bissell MJ. From laminin to lamin: regulation of tissue-specific gene expression by the ECM. Trends Cell Biol 1995;5:1–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Ingber D. Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis. J Cell Biochem 1991;47:236–241.CrossRefPubMedGoogle Scholar
  6. 6.
    Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. Electrospinning for tissue engineering scaffolds. Mat Sci Eng C 2007;27:504–509.CrossRefGoogle Scholar
  7. 7.
    Agarwal S, Greiner A, Wendorff JH. Electrospinning of manmade and biopolymer nanofibers-progress in techniques, materials, and applications. Adv Funct Mater 2009;19:2863–2879.CrossRefGoogle Scholar
  8. 8.
    Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer 2008;49:5603–5621.CrossRefGoogle Scholar
  9. 9.
    Baker SC, Atkin N, Gunning PA, Granville N, Wilson K, Wilson D, et al. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials 2006;27:3136–3146.CrossRefPubMedGoogle Scholar
  10. 10.
    Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 2004;25:1891–1900.CrossRefPubMedGoogle Scholar
  11. 11.
    Hench LL, Jones JR. Biomaterials, artificial organs and tissue engineering. Cambridge: Woodhead Publishing Ltd.; 2005.CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Lim CT, Ramakrishna S, Huang ZM. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med 2005;16:933–946.CrossRefPubMedGoogle Scholar
  13. 13.
    Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomed 2006;1:15–30.CrossRefGoogle Scholar
  14. 14.
    Huang ZM, Zhang YZ, Kotakic M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 2003;63:2223–2253.CrossRefGoogle Scholar
  15. 15.
    Smith R. Biodegradable polymers for industrial applications. Cambridge: Woodhead Publishing Ltd.; 2005.CrossRefGoogle Scholar
  16. 16.
    Lee J, Tae G, Kim YH, Park IS, Kim SH, Kim SH. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials 2008;29:1872–1879.CrossRefPubMedGoogle Scholar
  17. 17.
    Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials 2003;24:759–767.CrossRefPubMedGoogle Scholar
  18. 18.
    Friess W. Collagen—biomaterial for drug delivery. Eur J Pharm Biopharm 1998;45:113–136.CrossRefPubMedGoogle Scholar
  19. 19.
    Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 2008;60:184–198.CrossRefPubMedGoogle Scholar
  20. 20.
    Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials 2003;24:4353–4364.CrossRefPubMedGoogle Scholar
  21. 21.
    Gunn J, Zhang M. Polyblend nanofibers for biomedical applications: perspectives and challenges. Trends Biotechnol 2010;28:189–197.CrossRefPubMedGoogle Scholar
  22. 22.
    Nyanhongo GS,Diaz Rodriguez R, Nugroho Prasetyo E, Cristina C, Ribeiro C, Sencadas V, et al. Bioactive albumin functionalized polylactic acid membranes for improved biocompatibilty. React Funct Polym 2013;73:1399–1404.CrossRefGoogle Scholar
  23. 23.
    Yang X, Yuan M, Li W, Zhang G. Synthesis and properties of collagen/polylactic acid blends. Appl Polym 2004;94:1670–1675.CrossRefGoogle Scholar
  24. 24.
    Yang Y, Porte MC, Marmey P, El Haj AJ, Amédée J, Baquey C. Covalent bonding of collagen on poly(L-lactic acid) by gamma irradiation. Nucl Instrum Methods Phys Res Sect B 2003;207:165–174.CrossRefGoogle Scholar
  25. 25.
    Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog Polym Sci 2010;35:338–356.CrossRefGoogle Scholar
  26. 26.
    Cui YL, Qi AD, Liu WG, Wang XH, Wang H, Ma DM, et al. Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro. Biomaterials 2003;24:3859–3868.CrossRefPubMedGoogle Scholar
  27. 27.
    Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ. Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: physical, chemical, and theoretical aspects. Biomacromolecules 2004;5:463–473.CrossRefPubMedGoogle Scholar
  28. 28.
    Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 2007;32:698–725.CrossRefGoogle Scholar
  29. 29.
    Cui M, Liu L, Guo N, Su R, Ma F. Preparation, cell compatibility and degradability of collagen-modified poly(lactic acid). Molecules 2015;20:595–607.CrossRefPubMedGoogle Scholar
  30. 30.
    Luo YF, Wang YL, Niu XF, Pan J, Shi LP. Synthesis and characterization of a novel biomaterial: maleic anhydride-modified poly(dl-lactic acid). Chin Chem Lett 2014;15:521–524.Google Scholar
  31. 31.
    Pan J, Wang Y, Qin S, Zhang B, Luo Y. Grafting reaction of poly(D,L)lactic acid with maleic anhydride and hexanediamine to introduce more reactive groups in its bulk. J Biomed Mater Res B Appl Biomater 2005;74:476–480.CrossRefPubMedGoogle Scholar
  32. 32.
    Niu X, Wang Y, Luo Y, Pan J, Shang J. Synthesis of the biomimetic polymer: aliphatic diamine and RGDS modified poly(D, L-lactic acid). Chin Chem Lett 2005;16:1035–1038.Google Scholar
  33. 33.
    Vera-Grazianoa R, AMaciel-Cerda A, Moreno-Rondon EV, Ospina A, Gomez-Pachon EY. Modified Polylactide Microfiber Scaffolds for Tissue Engineering. In: Rodil S, Almaguer A, Anselme K, editors. MRS Proceedings. Vol. 1376. Warrendale, PA: Materials Research Society; 2012.Google Scholar
  34. 34.
    Plackett D. Maleated polylactide as an interfacial compatibilizer in biocomposites. J Polym Environ 2004;12:131–138.CrossRefGoogle Scholar
  35. 35.
    Kang IK, Kwon BK, Lee JH, Lee HB. Immobilization of proteins on poly(methyl methacrylate) films. Biomaterials 1993;14:787–792.CrossRefPubMedGoogle Scholar
  36. 36.
    Gómez-Pachón E, Sânchez-Arévalo FM, Sabina FJ, Maciel-Cerda A, Campos MR, Batina N, et al. Characterisation and modelling of the elastic properties of poly(lactic acid) nanofibre scaffolds. J Materials Sci 2013;48:8308–8319.CrossRefGoogle Scholar
  37. 37.
    Su R, Liu L, Li X, Cui M, Ma F. Study on synthesis and application of collagen modified polylactic acid. Polym Compos 2015;36:88–93.CrossRefGoogle Scholar
  38. 38.
    ASTM D1708-96. Standard test method for tensile properties of plastics by use of microtensile specimens. West Conshohocken, PA: ASTM International; 2002. DOI: 10.1520/D1708-96.Google Scholar
  39. 39.
    Fowlks AC. Development of polylactic acid-based materials through reactive modification. Ann Arbor: Michigan State University; 2010.Google Scholar
  40. 40.
    Muenprasat D, Suttireungwong S, Tongpin C. Functionalization of poly (lactic acid) with maleic anhydride for biomedical application. J Met Mater Min 2010;20:189–192.Google Scholar
  41. 41.
    Li X, Liu LL, Yang PF, Li P, Xin JJ, Su RX. Synthesis of collagen-modified polylactide and its application in drug delivery. J Appl Polym Sci 2013;129:3290–3296.CrossRefGoogle Scholar
  42. 42.
    Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C 2010;30:1204–1210.CrossRefGoogle Scholar
  43. 43.
    Hwang SW, Lee SB, Lee CK, Lee JY, Shim JK, Susan EM, et al. Grafting of maleic anhydride on poly(L-lactic acid). Effects of physical and mechanical properties. Polym Test 2012;31:333–344.Google Scholar
  44. 44.
    Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol 2008;20:86–100.CrossRefPubMedGoogle Scholar
  45. 45.
    Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 2012;33:3792–3802.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Almeida CR, Serra T, Oliveira MI, Planell JA, Barbosa MA, Navarro M. Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater 2014;10:613–622.CrossRefPubMedGoogle Scholar
  47. 47.
    Pouchert CJ. Aldrich Library of NMR Spectra. 2nd ed. Milwaukee, WI: Aldrich Chemical Co.; 1983. p. 1–603.Google Scholar
  48. 48.
    Pretsch E, Bühlmann P, Badertscher M. Structure determination of organic compounds. 4th ed. Berlin Heidelberg: Springer-Verlag; 2009. p. 224.Google Scholar
  49. 49.
    Cui W, Li X, Xie C, Zhuang H, Zhou S, Weng J. Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations. Biomaterials 2010;31:4620–4629.CrossRefPubMedGoogle Scholar
  50. 50.
    Cao C, Zhu F, Yu X, Wang Q, Wang C, Li B, et al. Two-step modification of poly(D, L-lactic acid) by ethylenediamine-maleic anhydride. Biomed Mater 2008;3:015002.CrossRefPubMedGoogle Scholar
  51. 51.
    Wen F, Chang S, Teoh SH, Yu H. Preparation of biocompatible poly(lactic-coglycolic acid) fiber scaffolds for rat liver cells cultivation. Mater Sci Eng C 2007;27:285–292.CrossRefGoogle Scholar
  52. 52.
    Kwon IK, Matsuda T. Co-electrospun nanofiber fabrics of poly(l-lactide-co-ε-caprolactone) with type I collagen or heparin. Biomacromolecules 2005;6:2096–2105.CrossRefPubMedGoogle Scholar
  53. 53.
    Gonçalves F, Bentini R, Burrows MC, Carreira ACO, Kossugue PM, Sogayar MC, et al. Hybrid membranes of PLLA/collagen for bone tissue engineering: a comparative study of scaffold production techniques for optimal mechanical properties and osteoinduction ability. Materials 2015;8:408–423.CrossRefGoogle Scholar

Copyright information

© The Korean Tissue Engineering and Regenerative Medicine Society and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Alida Ospina-Orejarena
    • 1
  • Ricardo Vera-Graziano
    • 1
  • Maria Monica Castillo-Ortega
    • 2
  • Juan Paulo Hinestroza
    • 3
  • Mabel Rodriguez-Gonzalez
    • 4
  • Laura Palomares-Aguilera
    • 4
  • Marissa Morales-Moctezuma
    • 1
  • Alfredo Maciel-Cerda
    • 1
    • 5
  1. 1.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMéxico, Distrito Federal C.P.México
  2. 2.Laboratorio de Química Sintética de Polímeros, Departamento de Investigación en Polímeros y MaterialesUniversidad de SonoraHermosillo, SonoraMéxico
  3. 3.Department of Fiber Science and Apparel DesignCornell UniversityIthacaUSA
  4. 4.Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca, MorelosMéxico
  5. 5.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMéxico, Distrito Federal C.P.México

Personalised recommendations