Advertisement

Tissue Engineering and Regenerative Medicine

, Volume 12, Issue 1, pp 59–68 | Cite as

Dental pulp stem cells derived conditioned medium promotes angiogenesis in hindlimb ischemia

  • ChongYang Shen
  • Lin Li
  • Ting Feng
  • JinRong Li
  • MeiXing Yu
  • Qiao Lu
  • Hong Li
Original Article

Abstract

Paracrine effects of mesenchymal stem cells (MSCs) have been suggested play an important role in the treatment of ischemic diseases. Dental pulp Stem cells (DPSCs) share many properties with MSCs. However, the beneficial effects of DPSCs on ischemic diseases remain to be elucidated. The present study, we found that DPSCs secreted higher levels angiogenic factors of VEGF, SDF-1, MCP-1 and PDGF-BB compared with AD-MSCs. We then investigated whether DP-CM can induce the migration of vascular smooth muscle cells (VSMCs) and human umbilical venous endothelial cells (HUVECs) in vitro. Under hypoxia, the apoptosis of HUVECs was inhibited while survival was improved by treatment of DP-CM. In a H2O2-induced cell death assay, DP-CM also significantly reduced HUVECs oxidative stress compare to control group. The tube formation assay demonstrated that the DP-CM group had a greater angiogenic potential than control medium. Results in the mouse model showed both the laser Doppler perfusion index and the relative number of CD31 positive microvessels to be significantly higher in the DP-CM group than in the control group [(77%±11%) vs. (45%±6%), and (6.2±1.1)/HPF vs. (2.3±0.3)/HPF]. In this way, the use of DP-CM may be a suitable means of treating ischemic diseases.

Key words

Hindlimb ischemia Dental pulp stem cells HUVECs Conditioned media Angiogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E Selvin, TP Erlinger, Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999–2000, Circulation, 110, 738 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    Y Kang, C Park, D Kim, et al., Unsorted human adipose tissue-derived stem cells promote angiogenesis and myogenesis in murine ischemic hindlimb model, Microvasc Res, 80, 310 (2010).PubMedCrossRefGoogle Scholar
  3. 3.
    NF Huang, H Niiyama, A De, et al., Embryonic stem cell-derived endothelial cells for treatment of hindlimb ischemia, J Vis Exp, (2009).Google Scholar
  4. 4.
    H Jiang, L Qu, Y Li, et al., Bone marrow mesenchymal stem cells reduce intestinal ischemia/reperfusion injuries in rats, J Surg Res, 168, 127 (2011).PubMedCrossRefGoogle Scholar
  5. 5.
    CK Sun, CL Chang, YC Lin, et al., Systemic administration of autologous adipose-derived mesenchymal stem cells alleviates hepatic ischemia-reperfusion injury in rats, Crit Care Med, 40, 1279 (2012).PubMedCrossRefGoogle Scholar
  6. 6.
    IM Barbash, P Chouraqui, J Baron, et al., Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution, Circulation, 108, 863 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    NF Huang, A Lam, Q Fang, et al., Bone marrow-derived mesenchymal stem cells in fibrin augment angiogenesis in the chronically infarcted myocardium, Regen Med, 4, 527 (2009).PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    M Gnecchi, Z Zhang, A Ni, et al., Paracrine mechanisms in adult stem cell signaling and therapy, Circ Res, 103, 1204 (2008).PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    G Paul, I Ozen, NS Christophersen, et al., The adult human brain harbors multipotent perivascular mesenchymal stem cells, PLoS One, 7, e35577 (2012).PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    H Kim, S-M Choi, H-S Kim, Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders, Tissue Engineering and Regenerative Medicine, 10, 93 (2013).CrossRefGoogle Scholar
  11. 11.
    SY Kim, JH Lee, HJ Kim, et al., Mesenchymal stem cell-conditioned media recovers lung fibroblasts from cigarette smoke-induced damage, Am J Physiol Lung Cell Mol Physiol, 302, L891 (2012).PubMedCrossRefGoogle Scholar
  12. 12.
    T Kinnaird, E Stabile, MS Burnett, et al., Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms, Circ Res, 94, 678 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    ST Hsiao, Z Lokmic, H Peshavariya, et al., Hypoxic conditioning enhances the angiogenic paracrine activity of human adipose-derived stem cells, Stem Cells Dev, 22, 1614 (2013).PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    SI Lee, KS Min, WJ Bae, et al., Role of SIRT1 in heat stress- and lipopolysaccharide-induced immune and defense gene expression in human dental pulp cells, J Endod, 37, 1525 (2011).PubMedCrossRefGoogle Scholar
  15. 15.
    P Hilkens, P Gervois, Y Fanton, et al., Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells, Cell Tissue Res, 353, 65 (2013).PubMedCrossRefGoogle Scholar
  16. 16.
    CZ Fang, YJ Yang, QH Wang, et al., Intraventricular injection of human dental pulp stem cells improves hypoxic-ischemic brain damage in neonatal rats, Plos One, 8, e66748 (2013).PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    L Pierdomenico, L Bonsi, M Calvitti, et al., Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp, Transplantation, 80, 836 (2005).PubMedCrossRefGoogle Scholar
  18. 18.
    C Marchionni, L Bonsi, F Alviano, et al., Angiogenic potential of human dental pulp stromal (stem) cells, Int J Immunopathol Pharmacol, 22, 699 (2009).PubMedGoogle Scholar
  19. 19.
    K Janebodin, Y Zeng, W Buranaphatthana, et al., VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells, J Dent Res, 92, 524 (2013).PubMedCrossRefGoogle Scholar
  20. 20.
    E Karaoz, BN Dogan, A Aksoy, et al., Isolation and in vitro characterisation of dental pulp stem cells from natal teeth, Histochem Cell Biol, 133, 95 (2010).PubMedCrossRefGoogle Scholar
  21. 21.
    MY Chen, PC Lie, ZL Li, et al., Endothelial differentiation of Wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells, Exp Hematol, 37, 629 (2009).PubMedCrossRefGoogle Scholar
  22. 22.
    T Terry, Z Chen, RA Dixon, et al., CD34(+)/M-cadherin(+) bone marrow progenitor cells promote arteriogenesis in ischemic hindlimbs of ApoE(-)/(-) mice, PLoS One, 6, e20673 (2011).PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    S Gronthos, M Mankani, J Brahim, et al., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo, Proc Natl Acad Sci U S A, 97, 13625 (2000).PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    M Dominici, K Le Blanc, I Mueller, et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, 8, 315 (2006).PubMedCrossRefGoogle Scholar
  25. 25.
    S Guiducci, M Manetti, E Romano, et al., Bone marrow-derived mesenchymal stem cells from early diffuse systemic sclerosis exhibit a paracrine machinery and stimulate angiogenesis in vitro, Ann Rheum Dis, 70, 2011 (2011).PubMedCrossRefGoogle Scholar
  26. 26.
    C Huang, H Gu, Q Yu, et al., Sca-1+ cardiac stem cells mediate acute cardioprotection via paracrine factor SDF-1 following myocardial ischemia/reperfusion, PLoS One, 6, e29246 (2011).PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    M Osugi, W Katagiri, R Yoshimi, et al., Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects, Tissue Eng Part A, 18, 1479 (2012).PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    L Timmers, SK Lim, F Arslan, et al., Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium, Stem Cell Res, 1, 129 (2007).PubMedCrossRefGoogle Scholar
  29. 29.
    T Kinnaird, E Stabile, MS Burnett, et al., Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms, Circulation Research, 94, 678 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    M Simons, Angiogenesis — Where do we stand now?, Circulation, 111, 1556 (2005).PubMedCrossRefGoogle Scholar
  31. 31.
    DW Losordo, S Dimmeler, Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines, Circulation, 109, 2487 (2004).PubMedCrossRefGoogle Scholar
  32. 32.
    P Lindahl, BR Johansson, P Leveen, et al., Pericyte loss and microaneurysm formation in PDGF-B-deficient mice, Science, 277, 242 (1997).PubMedCrossRefGoogle Scholar
  33. 33.
    A Linke, P Muller, D Nurzynska, et al., Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function, Proceedings of the National Academy of Sciences of the United States of America, 102, 8966 (2005).PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    L Lamalice, F Le Boeuf, J Huot, Endothelial cell migration during angiogenesis, Circulation Research, 100, 782 (2007).PubMedCrossRefGoogle Scholar
  35. 35.
    V Sordi, ML Malosio, F Marchesi, et al., Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets, Blood, 106, 419 (2005).PubMedCrossRefGoogle Scholar
  36. 36.
    S Bhakta, P Hong, O Koc, The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation, Cardiovasc Revasc Med, 7, 19 (2006).PubMedCrossRefGoogle Scholar
  37. 37.
    J Ma, Q Wang, T Fei, et al., MCP-1 mediates TGF-beta-induced angiogenesis by stimulating vascular smooth muscle cell migration, Blood, 109, 987 (2007).PubMedCrossRefGoogle Scholar
  38. 38.
    X Liu, B Duan, Z Cheng, et al., SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion, Protein Cell, 2, 845 (2011).PubMedCrossRefGoogle Scholar
  39. 39.
    Q Zhong, Y Zhou, W Ye, et al., Hypoxia-inducible factor 1-alpha-AA-modified bone marrow stem cells protect PC12 cells from hypoxia-induced apoptosis, partially through VEGF/PI3K/Akt/FoxO1 pathway, Stem Cells Dev, 21, 2703 (2012).PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Y Li, H Shelat, YJ Geng, IGF-1 prevents oxidative stress induced-apoptosis in induced pluripotent stem cells which is mediated by microRNA-1, Biochem Biophys Res Commun, 426, 615 (2012).PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Tissue Engineering and Regenerative Medicine Society and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • ChongYang Shen
    • 1
  • Lin Li
    • 2
  • Ting Feng
    • 1
  • JinRong Li
    • 3
  • MeiXing Yu
    • 1
  • Qiao Lu
    • 1
  • Hong Li
    • 1
    • 2
    • 3
  1. 1.Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth defects of the Ministry of Education, West China Second University HospitalSichuan UniversityChengduPR China
  2. 2.Department of Gynecology, West China Second University HospitalSichuan UniversityChengduPR China
  3. 3.Department of Pediatrics, West China Second University HospitalSichuan UniversityChengduPR China

Personalised recommendations